| A. | 2 | B. | 3 | C. | 4 | D. | 5 |
分析 利用辅助角公式化积,求出复合函数的减区间,再由f(x)在区间($\frac{π}{6}$,$\frac{π}{2}$)上递减列不等式求得ω的范围,继而得出ωx+$\frac{π}{3}$=k′π,从而可求ω的值.
解答 解:f(x)=sinωx+$\sqrt{3}$cosωx=2sin(ωx+$\frac{π}{3}$),
由$\frac{π}{2}$+2kπ≤ωx+$\frac{π}{3}$≤$\frac{3π}{2}$+2kπ,k∈Z,
取k=0,得:$\frac{π}{6ω}≤x≤\frac{7π}{6ω}$,由于f(x)在区间($\frac{π}{6}$,$\frac{π}{2}$)上单调递减,
∴$\left\{\begin{array}{l}{\frac{π}{6ω}≤\frac{π}{6}}\\{\frac{7π}{6ω}≥\frac{π}{2}}\end{array}\right.$,解得1≤ω≤$\frac{7}{3}$.
∵f($\frac{π}{6}$)+f($\frac{π}{2}$)=0,
∴x=$\frac{π}{3}$为f(x)=2sin(ωx+$\frac{π}{3}$)的一个中心的横坐标,
∴ωx+$\frac{π}{3}$=k′π,则ω=3k′-1,k′∈Z,
又1≤ω≤$\frac{7}{3}$.
∴ω=2.
故选:A.
点评 本题考查三角函数值的恒等变换应用,考查y=Asin(ωx+φ)型函数的图象和性质,是中档题.
科目:高中数学 来源: 题型:选择题
| A. | y=-x与y=x+2 | B. | y=x与y=-x-2 | C. | y=-x与y=x-2 | D. | y=x与y=-x+2 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
| 单价x(元) | 4 | 5 | 6 | 7 | 8 | 9 |
| 销量y(件) | 90 | 84 | 83 | 80 | 75 | 68 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\{\left.x\right|-2≤x<\frac{3}{2}\}$ | B. | {x|x<2} | C. | $\{\left.x\right|-2<x<\frac{3}{2}\}$ | D. | {x|x≤2} |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com