精英家教网 > 高中数学 > 题目详情
1.${∫}_{0}^{x}$(a0+a1x+a2x2+…+anxn)dx=x(x+1)n,则a1+a2+…+an=(n+2)2n-1-1.

分析 根据定积分的计算方法和求导法则得到(x+1)n+nx(x+1)n-1=a0+a1x+a2x2+…+anxn,再分别令x=1或x=0即可求出答案.

解答 解:${∫}_{0}^{x}$(a0+a1x+a2x2+…+anxn)dx=x(a0+$\frac{1}{2}$a1x+$\frac{1}{3}$a2x2+…+$\frac{1}{n+1}$anxn)=x(x+1)n
∴x(x+1)n=a0x+$\frac{1}{2}$a1x2+$\frac{1}{3}$a2x3+…+$\frac{1}{n+1}$anxn+1
两边求导可得(x+1)n+nx(x+1)n-1=a0+a1x+a2x2+…+anxn
令x=1,则a0+a1+a2+…+an=2n+n•2n-1=(n+2)2n-1
再令x=0,则a0=1,
∴a1+a2+…+an=(n+2)2n-1-1,
故答案为:(n+2)2n-1-1.

点评 本题主要考查二项式定理的应用,在二项展开式中,通过给变量赋值,求得某些项的系数和,是一种简单有效的方法,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.已知函数f(x)=sinωx+$\sqrt{3}$cosωx(ω>0)在($\frac{π}{6}$,$\frac{π}{2}$)上单调,且满足f($\frac{π}{6}$)+f($\frac{π}{2}$)=0,则ω=(  )
A.2B.3C.4D.5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.阅读右边程序框图,当输入的值为3时,运行相应程序,则输出x的值为(  )
A.7B.15C.31D.63

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数f(x)=sinx-x,则不等式f(x+2)+f(1-2x)<0的解集是(  )
A.$(-∞,-\frac{1}{3})$B.$(-\frac{1}{3},+∞)$C.(3,+∞)D.(-∞,3)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)的图象如图所示,则下列有关f(x)性质的描述正确的是(  )
A.φ=$\frac{2π}{3}$B.x=$\frac{7π}{12}$+kπ,k∈Z为其所有对称轴
C.[$\frac{π}{12}$+$\frac{kπ}{2}$,$\frac{7π}{12}$+$\frac{kπ}{2}$],k∈Z为其减区间D.f(x)向左移$\frac{π}{12}$可变为偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a,b>0)离心率为$\sqrt{3}$,左右焦点分别为F1,F2,P为双曲线右支上一点,∠F1PF2的平分线为l,点F1关于l的对称点为Q,|F2Q|=2,则双曲线方程为(  )
A.$\frac{{x}^{2}}{2}$-y2=1B.x2-$\frac{{y}^{2}}{2}$=1C.x2-$\frac{{y}^{2}}{3}$=1D.$\frac{{x}^{2}}{3}$-y2=1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.某几何体的三视图如图所示,则这个几何体的体积为(  )
A.$16-\frac{2π}{3}$B.$8-\frac{4π}{3}$C.$16-\frac{4π}{3}$D.$16(1-\frac{π}{3})$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.对于定义在[0,+∞)上的函数f(x),如果同时满足下列三条:
①对任意的x∈[0,+∞),总有f(x)≥0;
②若x1≥0,x2≥0,都有f(x1+x2)≥f(x1)+f(x2)成立;
③若0≤x1<x2<1,则$\frac{{f({x_1}+1)-f({x_2}+1)}}{{{x_1}-{x_2}}}$>1.
则称函数f(x)为超级囧函数,则下列是超级囧函数的为(3).
(1)f(x)=sinx
(2)g(x)=$\frac{1}{4}{x^2}$(x∈[0,1])
(3)h(x)=2x-1;
(4)p(x)=ln(x+1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知集合A={1,2,3,4},B={y|y=2x-1,x∈A},则A∩B=(  )
A.{1,2}B.{1,2,4}C.{2,4}D.{2,3,4}

查看答案和解析>>

同步练习册答案