精英家教网 > 高中数学 > 题目详情
16.函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)的图象如图所示,则下列有关f(x)性质的描述正确的是(  )
A.φ=$\frac{2π}{3}$B.x=$\frac{7π}{12}$+kπ,k∈Z为其所有对称轴
C.[$\frac{π}{12}$+$\frac{kπ}{2}$,$\frac{7π}{12}$+$\frac{kπ}{2}$],k∈Z为其减区间D.f(x)向左移$\frac{π}{12}$可变为偶函数

分析 观察图象由最值求A,根据周期公式求ω,然后由函数所过的最小值点,求出φ,从而可求函数的解析式,即可得出结论.

解答 解:观察图象可得,函数的最小值-1,所以A=1,
∵$\frac{T}{4}$=$\frac{7π}{12}-\frac{π}{3}$=$\frac{π}{4}$,∴T=π,
根据周期公式可得,ω=2,
∴f(x)=sin(2x+φ),
又函数图象过($\frac{7π}{12}$,-1)代入可得sin($\frac{7π}{6}$+φ)=-1,
∵0<φ<π,∴φ=$\frac{π}{3}$,
∴f(x)=sin(2x+$\frac{π}{3}$),
∴f(x)向左移$\frac{π}{12}$,为g(x)=cos2x,是偶函数.
故选D.

点评 本题主要考查了由函数的部分图象求函数的解析式,通常是由函数的最值求A,根据周期公式求ω,根据函数的最值点求φ,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.在平面直角坐标系xOy中,以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系,已知曲线C的极坐标方程为ρ=2$\sqrt{2}$cos($\frac{π}{4}$-θ)
(Ⅰ)求曲线C的直角坐标方程;
(Ⅱ)已知直线l过点P(1,0)且与曲线C交于A,B两点,若|PA|+|PB|=$\sqrt{5}$,求直线l的倾斜角α.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知递增数列{an}对任意n∈N*均满足an∈N*,aan=3n,记${b_n}={a_{2•{3^{n-1}}}}$(n∈N*),则数列{bn}的前n项和等于(  )
A.2n+nB.2n+1-1C.$\frac{{{3^{n+1}}-3n}}{2}$D.$\frac{{{3^{n+1}}-3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知实数x,y满足条件$\left\{\begin{array}{l}{3x+y-7≥0}\\{x+3y-13≤0}\\{x-y-1≤0}\end{array}\right.$,则z=|2x+y|的最小值为(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知直线m,n与平面α,β,γ满足α⊥β,α∩β=m,n⊥α,n?γ,则下列判断一定正确的是(  )
A.m∥γ,α⊥γB.n∥β,α⊥γC.β∥γ,α⊥γD.m⊥n,α⊥γ

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.${∫}_{0}^{x}$(a0+a1x+a2x2+…+anxn)dx=x(x+1)n,则a1+a2+…+an=(n+2)2n-1-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,四棱锥P-ABCD中,∠ABC=BAD=90°,BC=2AD,△PAB与△PAD都是边长为2的等边三角形,E是BC的中点.
(I)求证:AE∥平面PCD
(II)证明:平面PCD⊥平面PBD.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知i为虚数单位,z+zi=1+5i,则z=(  )
A.2+3iB.2-3iC.3-2iD.3+2i

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)=ax3-3x2+1,若f(x)存在2个零点x1,x2,且x1,x2都大于0,则a的取值范围是(0,2).

查看答案和解析>>

同步练习册答案