精英家教网 > 高中数学 > 题目详情
4.已知实数x,y满足条件$\left\{\begin{array}{l}{3x+y-7≥0}\\{x+3y-13≤0}\\{x-y-1≤0}\end{array}\right.$,则z=|2x+y|的最小值为(  )
A.3B.4C.5D.6

分析 由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数得答案.

解答 解:由约束条件$\left\{\begin{array}{l}{3x+y-7≥0}\\{x+3y-13≤0}\\{x-y-1≤0}\end{array}\right.$作出可行域如图,

联立$\left\{\begin{array}{l}{x-y-1=0}\\{3x+y-7=0}\end{array}\right.$,解得A(2,1).
目标函数z=|2x+y|=2x+y,
化目标函数z=2x+y为y=-2x+z,
由图可知,当直线y=-2x+z过点A时,直线在y轴上的截距最小,z有最小值为5.
故选:C.

点评 本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.函数$y={log_{\frac{1}{3}}}({-{x^2}+2x+3})$的单调增区间是(  )
A.(-1,1]B.(-∞,1)C.[1,3)D.(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知A,B为抛物线E:y2=2px(p>0)上异于顶点O的两点,△AOB是等边三角形,其面积为48$\sqrt{3}$,则p的值为(  )
A.2B.2$\sqrt{3}$C.4D.4$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.阅读右边程序框图,当输入的值为3时,运行相应程序,则输出x的值为(  )
A.7B.15C.31D.63

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.执行如图的程序框图,则输出的S=(  )
A.$\frac{\sqrt{3}}{2}$B.$\sqrt{3}$C.-$\frac{\sqrt{3}}{2}$D.0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数f(x)=sinx-x,则不等式f(x+2)+f(1-2x)<0的解集是(  )
A.$(-∞,-\frac{1}{3})$B.$(-\frac{1}{3},+∞)$C.(3,+∞)D.(-∞,3)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)的图象如图所示,则下列有关f(x)性质的描述正确的是(  )
A.φ=$\frac{2π}{3}$B.x=$\frac{7π}{12}$+kπ,k∈Z为其所有对称轴
C.[$\frac{π}{12}$+$\frac{kπ}{2}$,$\frac{7π}{12}$+$\frac{kπ}{2}$],k∈Z为其减区间D.f(x)向左移$\frac{π}{12}$可变为偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.某几何体的三视图如图所示,则这个几何体的体积为(  )
A.$16-\frac{2π}{3}$B.$8-\frac{4π}{3}$C.$16-\frac{4π}{3}$D.$16(1-\frac{π}{3})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知直线y=x-1过椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的右焦点,且椭圆C的离心率为$\frac{1}{3}$.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)以椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的短轴为直径作圆,若点M是第一象限内圆周上一点,过点M作圆的切线交椭圆C于P,Q两点,椭圆C的右焦点为F2,试判断△PF2Q的周长是否为定值,若是求出该定值.

查看答案和解析>>

同步练习册答案