| A. | 3 | B. | 4 | C. | 5 | D. | 6 |
分析 由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数得答案.
解答 解:由约束条件$\left\{\begin{array}{l}{3x+y-7≥0}\\{x+3y-13≤0}\\{x-y-1≤0}\end{array}\right.$作出可行域如图,![]()
联立$\left\{\begin{array}{l}{x-y-1=0}\\{3x+y-7=0}\end{array}\right.$,解得A(2,1).
目标函数z=|2x+y|=2x+y,
化目标函数z=2x+y为y=-2x+z,
由图可知,当直线y=-2x+z过点A时,直线在y轴上的截距最小,z有最小值为5.
故选:C.
点评 本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.
科目:高中数学 来源: 题型:选择题
| A. | (-1,1] | B. | (-∞,1) | C. | [1,3) | D. | (1,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 2$\sqrt{3}$ | C. | 4 | D. | 4$\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{3}}{2}$ | B. | $\sqrt{3}$ | C. | -$\frac{\sqrt{3}}{2}$ | D. | 0 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $(-∞,-\frac{1}{3})$ | B. | $(-\frac{1}{3},+∞)$ | C. | (3,+∞) | D. | (-∞,3) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | φ=$\frac{2π}{3}$ | B. | x=$\frac{7π}{12}$+kπ,k∈Z为其所有对称轴 | ||
| C. | [$\frac{π}{12}$+$\frac{kπ}{2}$,$\frac{7π}{12}$+$\frac{kπ}{2}$],k∈Z为其减区间 | D. | f(x)向左移$\frac{π}{12}$可变为偶函数 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $16-\frac{2π}{3}$ | B. | $8-\frac{4π}{3}$ | C. | $16-\frac{4π}{3}$ | D. | $16(1-\frac{π}{3})$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com