精英家教网 > 高中数学 > 题目详情
12.阅读右边程序框图,当输入的值为3时,运行相应程序,则输出x的值为(  )
A.7B.15C.31D.63

分析 模拟程序的运行,依次写出每次循环得到的x,n的值,当n=4时不满足条件n≤3,退出循环,输出x的值为31.

解答 解:模拟程序的运行,可得
x=3,n=1
满足条件n≤3,执行循环体,x=7,n=2
满足条件n≤3,执行循环体,x=15,n=3
满足条件n≤3,执行循环体,x=31,n=4
不满足条件n≤3,退出循环,输出x的值为31.
故选:C.

点评 本题主要考查了循环结构的程序框图的应用,当循环的次数不多或有规律时,常采用模拟程序运行的方式解决,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.直线$\left\{\begin{array}{l}x=2+t\;\\ y=4-t\end{array}\right.$(t为参数)与曲线$\left\{\begin{array}{l}x=3+\sqrt{2}cosθ\;\\ y=5+\sqrt{2}sinθ\end{array}\right.$(θ为参数)的公共点的个数是1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知命题p∧q是假命题,p∨q是真命题,则下列命题一定是真命题的是(  )
A.qB.(?p)∧(?q)C.pD.(?p)∨(?q)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知集合A={x|y=lg(3-2x)},B={x|x2≤4},则A∪B=(  )
A.$\{\left.x\right|-2≤x<\frac{3}{2}\}$B.{x|x<2}C.$\{\left.x\right|-2<x<\frac{3}{2}\}$D.{x|x≤2}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知递增数列{an}对任意n∈N*均满足an∈N*,aan=3n,记${b_n}={a_{2•{3^{n-1}}}}$(n∈N*),则数列{bn}的前n项和等于(  )
A.2n+nB.2n+1-1C.$\frac{{{3^{n+1}}-3n}}{2}$D.$\frac{{{3^{n+1}}-3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,圆锥的横截面为等边三角形SAB,O为底面圆圆心,Q为底面圆周上一点.
(Ⅰ)如果BQ的中点为C,OH⊥SC,求证:OH⊥平面SBQ;
(Ⅱ)如果∠AOQ=60°,QB=2$\sqrt{3}$,求该圆锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知实数x,y满足条件$\left\{\begin{array}{l}{3x+y-7≥0}\\{x+3y-13≤0}\\{x-y-1≤0}\end{array}\right.$,则z=|2x+y|的最小值为(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.${∫}_{0}^{x}$(a0+a1x+a2x2+…+anxn)dx=x(x+1)n,则a1+a2+…+an=(n+2)2n-1-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=$\sqrt{3}$sinωxcosωx-cos2ωx+$\frac{1}{2}$(ω>0),与f(x)图象的对称轴x=$\frac{π}{3}$相邻的f(x)的零点为x=$\frac{π}{12}$.
(Ⅰ)讨论函数f(x)在区间$[{-\frac{π}{12},\frac{5π}{12}}]$上的单调性;
(Ⅱ)设△ABC的内角A,B,C的对应边分别为a,b,c,且c=$\sqrt{3}$,f(C)=1,若向量$\overrightarrow m$=(1,sinA)与向量$\overrightarrow n$=(2,sinB)共线,求a,b的值.

查看答案和解析>>

同步练习册答案