精英家教网 > 高中数学 > 题目详情
7.已知递增数列{an}对任意n∈N*均满足an∈N*,aan=3n,记${b_n}={a_{2•{3^{n-1}}}}$(n∈N*),则数列{bn}的前n项和等于(  )
A.2n+nB.2n+1-1C.$\frac{{{3^{n+1}}-3n}}{2}$D.$\frac{{{3^{n+1}}-3}}{2}$

分析 利用数列{an}为递增数列,an∈N*,aan=3n,通过对a1=1、2、3分类讨论,求得a1=2,a2=3,a3=6,…,再由${b_n}={a_{2•{3^{n-1}}}}$(n∈N*),可进一步求得b1、b2、b3、b4,…,从而猜想得到数列{bn}的通项公式,继而可得其前n项和.

解答 解:${a_{a_1}}=3⇒{a_1}≤3$,讨论:
若${a_1}=1⇒{a_{a_1}}={a_1}=1$,不合;
若a1=2⇒a2=3;
若${a_1}=3⇒{a_{a_1}}={a_3}=3$,不合;
即a1=2,a2=3,${a_{a_2}}=6⇒{a_3}=6$,
所以${a_{a_3}}=9⇒{a_6}=9$,
所以${a_9}={a_{a_6}}=18$,${a_{18}}={a_{a_9}}=27$,${a_{27}}={a_{{a_{18}}}}=54$,${a_{54}}={a_{{a_{27}}}}=81$,
猜测${b_n}={3^n}$,所以数列{bn}的前n项和等于$\frac{{3-{3^{n+1}}}}{1-3}=\frac{{{3^{n+1}}-3}}{2}$.
故选:D.

点评 本题考查数列递推关系的应用,求得a1=2,a2=3是关键,考查分类讨论思想与归纳推理能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.在平面直角坐标系xoy中,过M(2,1)的直线l的倾斜角为$\frac{π}{4}$,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,两种坐标系中取相同的长度单位,圆C的极坐标方程为ρ=4$\sqrt{2}$sin(θ+$\frac{π}{4}$).
(1)求直线l的参数方程与圆C的直角坐标方程;
(2)设圆C与直线l交于A,B两点,求$\frac{1}{|MA|}$+$\frac{1}{|MB|}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若一个三位数的十位数字比个位数字和百位数字都大,则称这个数为“伞数”,现从0,1,2,3,4,5,6,7,这个数字中任取3个,组成无重复数字的三位数,其中“伞数”有91个(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知A,B为抛物线E:y2=2px(p>0)上异于顶点O的两点,△AOB是等边三角形,其面积为48$\sqrt{3}$,则p的值为(  )
A.2B.2$\sqrt{3}$C.4D.4$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知随机变量ξ服从正态分布N(μ,σ2),若P(ξ<2)=P(ξ>6)=0.15,则P(2≤ξ<4)等于(  )
A.0.3B.0.35C.0.5D.0.7

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.阅读右边程序框图,当输入的值为3时,运行相应程序,则输出x的值为(  )
A.7B.15C.31D.63

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.执行如图的程序框图,则输出的S=(  )
A.$\frac{\sqrt{3}}{2}$B.$\sqrt{3}$C.-$\frac{\sqrt{3}}{2}$D.0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)的图象如图所示,则下列有关f(x)性质的描述正确的是(  )
A.φ=$\frac{2π}{3}$B.x=$\frac{7π}{12}$+kπ,k∈Z为其所有对称轴
C.[$\frac{π}{12}$+$\frac{kπ}{2}$,$\frac{7π}{12}$+$\frac{kπ}{2}$],k∈Z为其减区间D.f(x)向左移$\frac{π}{12}$可变为偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=$\frac{1}{2}{x^2}$+mx+mlnx.
(Ⅰ)讨论函数f(x)的单调性;
(Ⅱ)当m>0时,若对于区间[1,2]上的任意两个实数x1,x2,且x1<x2,都有|f(x1)-f(x2)|<x22-x12成立,求实数m的最大值.

查看答案和解析>>

同步练习册答案