精英家教网 > 高中数学 > 题目详情
13.某几何体的三视图如图所示,则这个几何体的体积为(  )
A.$16-\frac{2π}{3}$B.$8-\frac{4π}{3}$C.$16-\frac{4π}{3}$D.$16(1-\frac{π}{3})$

分析 根据几何体的三视图知该几何体是底面为正方形的四棱柱,挖去一个圆锥;结合图中数据,计算它的体积即可.

解答 解:根据几何体的三视图知,
该几何体是底面为正方形的四棱柱,挖去一个圆锥;
画出图形如图所示,

结合图中数据,计算该几何体的体积为:
V=V四棱柱-V圆锥
=22×4-$\frac{1}{3}$π•12•4
=16-$\frac{4π}{3}$.
故选:C.

点评 本题考查了空间几何体三视图的应用问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.已知命题p∧q是假命题,p∨q是真命题,则下列命题一定是真命题的是(  )
A.qB.(?p)∧(?q)C.pD.(?p)∨(?q)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知实数x,y满足条件$\left\{\begin{array}{l}{3x+y-7≥0}\\{x+3y-13≤0}\\{x-y-1≤0}\end{array}\right.$,则z=|2x+y|的最小值为(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.${∫}_{0}^{x}$(a0+a1x+a2x2+…+anxn)dx=x(x+1)n,则a1+a2+…+an=(n+2)2n-1-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.如图,四棱锥P-ABCD中,∠ABC=BAD=90°,BC=2AD,△PAB与△PAD都是边长为2的等边三角形,E是BC的中点.
(I)求证:AE∥平面PCD
(II)证明:平面PCD⊥平面PBD.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若等比数列{an}的公比为q,则关于x,y的二元一次方程组$\left\{\begin{array}{l}{a_1}x+{a_3}y=2\\{a_2}x+{a_4}y=1\end{array}\right.$的解的情况下列说法正确的是(  )
A.对任意q∈R(q≠0),方程组都有唯一解
B.对任意q∈R(q≠0),方程组都无解
C.当且仅当$q=\frac{1}{2}$时,方程组有无穷多解
D.当且仅当$q=\frac{1}{2}$时,方程组无解

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知i为虚数单位,z+zi=1+5i,则z=(  )
A.2+3iB.2-3iC.3-2iD.3+2i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=$\sqrt{3}$sinωxcosωx-cos2ωx+$\frac{1}{2}$(ω>0),与f(x)图象的对称轴x=$\frac{π}{3}$相邻的f(x)的零点为x=$\frac{π}{12}$.
(Ⅰ)讨论函数f(x)在区间$[{-\frac{π}{12},\frac{5π}{12}}]$上的单调性;
(Ⅱ)设△ABC的内角A,B,C的对应边分别为a,b,c,且c=$\sqrt{3}$,f(C)=1,若向量$\overrightarrow m$=(1,sinA)与向量$\overrightarrow n$=(2,sinB)共线,求a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知集合A={x|x2>x},B={-1,0,$\frac{1}{2}$,2},则A∩B=(  )
A.{0,2}B.{-1,2}C.$\{0,\frac{1}{2}\}$D.$\{\frac{1}{2},2\}$

查看答案和解析>>

同步练习册答案