精英家教网 > 高中数学 > 题目详情
6.已知函数f(x)=ax3-3x2+1,若f(x)存在2个零点x1,x2,且x1,x2都大于0,则a的取值范围是(0,2).

分析 通过a与0的大小讨论,利用函数f(x)=ax3-3x2+1存在两个正零点,转化为函数的极值与0的关系,然后得到答案.

解答 解:当a=0时,函数f(x)=-3x2+1有且只有两个零点,一个为正,一个为负不满足条件;
当a>0时,令f′(x)=3ax2-6x=0,解得:x=0,或x=$\frac{2}{a}$,x=0是极大值点,x=$\frac{2}{a}$是极小值点,
∵f(0)=1≠0,
∴f($\frac{2}{a}$)=$\frac{{a}^{2}-4}{{a}^{2}}$<0,
解得:a∈(0,2),
当a<0时,令f′(x)=3ax2-6x=0,解得:x=0,或x=$\frac{2}{a}$,x=0是极小值点,x=$\frac{2}{a}$是极大值点,
∵f(0)=1>0,函数只有一个零点,不满足题意,
综上,a∈(0,2).
给答案为:(0,2).

点评 本题考查的知识点是函数的零点及零点个数,函数的导数的应用,考查分类讨论思想,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)的图象如图所示,则下列有关f(x)性质的描述正确的是(  )
A.φ=$\frac{2π}{3}$B.x=$\frac{7π}{12}$+kπ,k∈Z为其所有对称轴
C.[$\frac{π}{12}$+$\frac{kπ}{2}$,$\frac{7π}{12}$+$\frac{kπ}{2}$],k∈Z为其减区间D.f(x)向左移$\frac{π}{12}$可变为偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=$\frac{1}{2}{x^2}$+mx+mlnx.
(Ⅰ)讨论函数f(x)的单调性;
(Ⅱ)当m>0时,若对于区间[1,2]上的任意两个实数x1,x2,且x1<x2,都有|f(x1)-f(x2)|<x22-x12成立,求实数m的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知直线y=x-1过椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的右焦点,且椭圆C的离心率为$\frac{1}{3}$.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)以椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的短轴为直径作圆,若点M是第一象限内圆周上一点,过点M作圆的切线交椭圆C于P,Q两点,椭圆C的右焦点为F2,试判断△PF2Q的周长是否为定值,若是求出该定值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数f(x)=$\sqrt{3}$sin(2x+φ)+cos(2x+φ)为偶函数,且在[0,$\frac{π}{4}$]上是增函数,则φ的一个可能值为(  )
A.$\frac{π}{3}$B.$\frac{2π}{3}$C.$\frac{4π}{3}$D.$\frac{5π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知集合A={1,2,3,4},B={y|y=2x-1,x∈A},则A∩B=(  )
A.{1,2}B.{1,2,4}C.{2,4}D.{2,3,4}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.在[0,2π]上随机取一个数x,则事件“$cos(x+\frac{π}{3})+\sqrt{3}sin(x+\frac{π}{3})≥1$”发生的概率为(  )
A.$\frac{1}{2}$B.$\frac{1}{3}$C.$\frac{1}{6}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在平面直角坐标系xOy中,抛物线C的顶点是原点,以x轴为对称轴,且经过点P(1,2).
(Ⅰ)求抛物线C的方程;
(Ⅱ)设点A,B在抛物线C上,直线PA,PB分别与y轴交于点M,N,|PM|=|PN|.求直线AB的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.若变量x,y满足约束条件$\left\{\begin{array}{l}{x+y≥0}\\{x-y+3≥0}\\{0≤x≤3}\end{array}\right.$则z=3x-y的最小值为-3.

查看答案和解析>>

同步练习册答案