精英家教网 > 高中数学 > 题目详情
已知函数f(x)=-x3+ax2+b(a,b∈R)
(1)若函数f(x)在(0,2)上是增函数,求实数a的取值范围;
(2)设x1,x2,x3为方程f(x)=0的三个根,且x1∈(-1,0),x2∈(0,1),x3(-∞,-1)∪(1,+∞),求证:|a|>1.
分析:(1)先求函数f(x)的导函数f′(x)=-3x2+2ax,f′(x)=0的两个根分别为x=0或x=
2
3
a
,为了求函数的单调增区间,需讨论a与0的关系,结合已知函数f(x)在(0,2)上是增函数,区间(0,2)应为函数单调增区间的子区间,从而求得a的范围,也可根据导函数的图象开口向下,过(0,0)的特点,只需导函数在(0,2)上恒大于或等于零,即
f′(0)≥0
f′(2)≥0
解得a的范围.
(2)由于一元三次方程最多三个根,且x1∈(-1,0),x2∈(0,1),x3(-∞,-1)∪(1,+∞),由根的存在性定理,f(-1)×f(0)<0,且f(0)×f(1)<0,得关于a和b的不等式,分别讨论b>0,b=0,b<0,证明满足题意的a的绝对值恒大于1
解答:解:(1)解:由题意,得f′(x)=-3x2+2ax 
令f′(x)=0,解得x=0或x=
2
3
a

当a<0时,由f′(x)>0,解得
2
3
a<x<0,
∴f(x)在(
2
3
a
,0)上是增函数,与题意不符,舍去      
当a=0时,由f′(x)=-3x2≤0,
∴f(x)在(-∞,+∞)上是减函数与题意不符,舍去   
当a>0时,由f′(x)>0,解得0<x<
2
3
a

∴f(x)在(0,
2
3
a
)上是增函数,
又∵f(x)在(0,2)上是增函数,
所以
2
3
a
≥2,解得a≥3   
综上,a的取值范围为[3,+∞)         
另解:要使f(x)在(0,2)上是增函数,只需f′(x)在(0,2)上恒大于或等于零
∵f′(x)=)=-3x2+2ax 的图象是开口向下的抛物线,且过定点(0,0)
∴只需
f′(0)≥0
f′(2)≥0
,即
0≥0
-3×4+4a≥0

a≥3,即a的取值范围为[3,+∞)      
(2)解:因为方程f(x)=-x3+ax2+b=0最多只有3个根,
由题意得在区间(-1,0)内仅有一根,
∴f(-1)f(0)=b(1+a+b)<0,①
由题意得在区间(0,1)内仅有一根,
∴f(0)•f(1)=b(-1+a+b)<0      ②
当b=0时,∵f(0)=0,
∴f(x)=0有一根0,这与题意不符,
∴b≠0
当b>0时,由①得1+a+b<0,即a<-b-1,
由②得-1+a+b<0,即a<-b+1,
∵-b-1<-b+1,∴a<-b-1<-1,
即a<-1    
当b<0时,由①得1+a+b>0,即a>-b-1,
由②得-1+a+b>0,即a>-b+1,
∵-b-1<-b+1,∴a>-b+1>1,
即a>1  
综上,|a|>1
点评:本题考查了导数在函数单调性中的应用,已知函数的单调性求参数范围的解决方法,函数的零点存在性定理与方程根的分布的关系,分类讨论的思想方法
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函数f(x)的最小正周期;
(2)若函数y=f(2x+
π
4
)
的图象关于直线x=
π
6
对称,求φ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)为定义在R上的奇函数,且当x>0时,f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,时f(x)的表达式;
(2)若关于x的方程f(x)-a=o有解,求实数a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=aInx-ax,(a∈R)
(1)求f(x)的单调递增区间;(文科可参考公式:(Inx)=
1
x

(2)若f′(2)=1,记函数g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在区间(1,3)上总不单调,求实数m的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-bx的图象在点A(1,f(1))处的切线l与直线3x-y+2=0平行,若数列{
1
f(n)
}
的前n项和为Sn,则S2010的值为(  )
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)是定义在区间(-1,1)上的奇函数,且对于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,则实数a的取值范围是
 

查看答案和解析>>

同步练习册答案