精英家教网 > 高中数学 > 题目详情

如图1, 在直角梯形中, 为线段的中点. 将沿折起,使平面平面,得到几何体,如图2所示.

(1)求证:平面

(2)求二面角的余弦值.   

 

【答案】

(1)根据线面垂直的性质定理来证明线线垂直。

(2)

【解析】

试题分析:解析:(1)在图1中, 可得, 从而

.

中点连结, 则, 又面

, 从而平面.

,又.

平面.

(2)建立空间直角坐标系如图所示,

.

为面的法向量,则, 解得. 令, 可得.

为面的一个法向量,∴.

∴二面角的余弦值为.

(法二)如图,取的中点的中点,连结.

易知,又,又.

的中位线,因,且都在面内,故,故即为二面角的平面角.

中,易知

中,易知.

.

.

∴二面角的余弦值为.

考点:棱锥中的垂直以及二面角的平面角

点评:主要是考查了运用向量法来空间中的角以及垂直的证明,属于基础题。

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图1,在直角梯形ABEF中(图中数字表示线段的长度),将直角梯形DCEF沿CD折起,使平面DCEF⊥平面ABCD,连接部分线段后围成一个空间几何体,如图2.
(Ⅰ)求证:BE∥平面ADF;
(Ⅱ)求三棱锥F-BCE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图1,在直角梯形ABCD中,∠ABC=∠DAB=90°,∠CAB=30°,BC=1,AD=CD,把△DAC沿对角线AC折起后如图2所示(点D记为点P),点P在平面ABC上的正投影E落在线段AB上,连接PB.
(1)求直线PC与平面PAB所成的角的大小;
(2)求二面角P-AC-B的大小的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图1,在直角梯形ABCP中,AP∥BC,AP⊥AB,AB=BC=
12
AP=2
,D是AP的中点,E,F,G分别为PC、PD、CB的中点,将△PCD沿CD折起,使得PD⊥平面ABCD,如图2.
(Ⅰ)求三棱椎D-PAB的体积;
(Ⅱ)求证:AP∥平面EFG;
(Ⅲ)求二面角G-EF-D的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图1,在直角梯形ABCD中,∠ADC=90°,CD∥AB,AB=2,AD=CD=1.将△ADC沿AC折起,使平面ADC⊥平面ABC,得到几何体D-ABC,如图2所示.求几何体D-ABC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•福建模拟)如图1,在直角梯形ABCD中,AB∥CD,AB⊥AD,且AB=AD=
12
CD=1

现以AD为一边向形外作正方形ADEF,然后沿边AD将正方形ADEF翻折,使平面ADEF与平面ABCD垂直,M为ED的中点,如图2.
(1)求证:AM∥平面BEC;
(2)求证:BC⊥平面BDE;
(3)求三棱锥D-BCE的体积.

查看答案和解析>>

同步练习册答案