解:(1)由椭圆C的离心率e=
,
椭圆C的左、右焦点分别为F1(-c,0)、F2(c,0),
又点F2在线段PF1的中垂线上,
∴|F1F2|=|PF2|,
∴(2c)2=(
)2+(2-c)2,解得c=1,
∴a2=2,b2=1,
∴椭圆的方程为
+y2=1;
2)由题意,直线MN的方程为y=kx+m,
由
消去y得(2k2+1)x2+4kmx+2m2-2=0,
设M(x1,y1),N(x2,y2),
则
,
且![]()
,![]()
,
由已知α+β=π得
,
即
,
化简,得2kx1x2+(m-k)(x1+x2)-2m=0,
∴2k·
,解得m=-2k,
∴直线MN的方程为y=k(x-2),
因此直线MN过定点,该定点的坐标为(2,0)。
科目:高中数学 来源:2013年四川省资阳市高考数学二模试卷(文科)(解析版) 题型:解答题
查看答案和解析>>
科目:高中数学 来源:2012年陕西省高考数学压轴卷(解析版) 题型:选择题
查看答案和解析>>
科目:高中数学 来源:2012年吉林省高考数学仿真模拟试卷9(理科)(解析版) 题型:解答题
查看答案和解析>>
科目:高中数学 来源:2011年高考数学总复习备考综合模拟试卷(3)(解析版) 题型:解答题
查看答案和解析>>
科目:高中数学 来源:2011-2012学年四川省攀枝花市高三12月月考文科数学试卷(解析版) 题型:解答题
已知椭圆C:
=1(a>b>0)的离心率为
,且在x轴上的顶点分别为![]()
(1)求椭圆方程;
(2)若直线
:
与
轴交于点T,P为
上异于T的任一点,直线
分别与椭圆交于M、N两点,试问直线MN是否通过椭圆的焦点?并证明你的结论.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com