精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆与双曲线有公共的焦点,的一条渐近线与以的长轴为直径的圆相交于两点,若恰好将线段三等分,则

A.B.C.D.

【答案】B

【解析】

先由双曲线方程确定一条渐近线方程为y=2x,根据对称性易知AB为圆的直径且AB=2a,利用椭圆与双曲线有公共的焦点,得方程a2-b2=5;设C1y=2x在第一象限的交点的坐标,代入C1的方程得;由对称性求得直线y=2xC1截得的弦长,根据C1恰好将线段AB三等分得出a2b2的值,故可得结论.

由题意, C2的焦点为,一条渐近线方程为y=2x,根据对称性易知AB为圆的直径且AB=2a

C1的半焦距,于是得

C1y=2x在第一象限的交点的坐标为(m,2m),代入C1的方程得:

由对称性知直线y=2xC1截得的弦长

由题得:,所以

②③

①④

故选C

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】一项针对某一线城市3050岁都市中年人的消费水平进行调查,现抽查500名(200名女性,300名男性)此城市中年人,最近一年内购买六类高价商品(电子产品、服装、手表、运动与户外用品、珠宝首饰、箱包)的金额(万元)的频数分布表如下:

女性

金额

频数

20

40

80

50

10

男性

金额

频数

45

75

90

60

30

1)将频率视为概率,估计该城市中年人购买六类高价商品的金额不低于5000元的概率.

2)把购买六类高价商品的金额不低于5000元的中年人称为高收入人群,根据已知条件完成列联表,并据此判断能否有95%的把握认为高收入人群与性别有关?

高收入人群

非高收入人群

合计

女性

60

男性

180

合计

500

参考公式:,其中

参考附表:

0.10

0.050

0.010

0.001

2.706

3.841

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线在第一象限内的点到焦点的距离为

1,过点, 的直线与抛物线相交于另一点,求的值

2)若直线与抛物线相交于两点,与圆相交于两点, 为坐标原点, ,试问:是否存在实数,使得的长为定值?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】分别是正方体的棱,,的中点,则下列命题中的真命题是__________(写出所有真命题的序号).

①以正方体的顶点为顶点的三棱锥的四个面中最多可以四个面都是直角三角形;

②点在直线上运动时,总有;

③点在直线上运动时,三棱锥的体积是定值;

④若是正方体的面,(含边界)内一动点,且点到点的距离相等,则点的轨迹是一条线段.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设抛物线的焦点为,点在抛物线上,.若以为直径的圆过点,则抛物线的焦点到准线距离为( )

A. 8B. 4或8C. 2D. 2或4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】C反应蛋白(CRP)是机体受到微生物入侵或组织损伤等炎症性刺激时细胞合成的急性相蛋白,医学认为CRP值介于0-10mg/L为正常值.下面是某患者在治疗期间连续5天的检验报告单中CRP值(单位:mg/L)与治疗大数的统计数据:

治疗天数x

1

2

3

4

5

CRPy

51

40

35

28

21

1)若CRPy与治疗数x只有线性相关关系试用最小乘法求出y关于x的线性回归方程,并估计该者至少需要治疗多少天CRP值可以回到正常水平;

2)为均衡城乡保障待遇,统一保障范同和支付准,为多保人员提供公平的基本医疗保障.某市城乡医疗保险实施办法指出:门诊报销比例为50%;住院报销比例,A类医疗机构80%,B类医疗机构60.若张华参加了城乡基本医疗保险,他因CRP偏高选择在医疗机构治疗,医生为张华提供了三种治疗方案:方案一:门诊治疗,预计每天诊疗费80元;方案二:住院治疗,A类医疗机构,入院检查需花费600元,预计每天诊疗费100元;方案三:住院治疗,B类医疗机构,入院检查需花费400元,预计每天诊疗费40元;若张华需要经过连续治疗n,请你为张华选择最经济实惠的治疗方案.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】C反应蛋白(CRP)是机体受到微生物入侵或组织损伤等炎症性刺激时肝细胞合成的急性相蛋白,医学认为CRP值介于0-10mg/L为正常值下面是某患者在治疗期间连续5天的检验报告单中CRP值(单位:mg/L)与治疗天数的统计数据:

治疗天数x

1

2

3

4

5

CRPy

51

40

35

28

21

1)若CRPy与治疗天数x具有线性相关关系,试用最小二乘法求出y关于x的线性回归方程,并估计该患者至少需要治疗多少天CRP值可以到正常水平;

2)为均衡城乡保障待遇,统一保障范围和支付标准,为参保人员提供公平的基本医疗保障.某市城乡医疗保险实施办法指出:门诊报销比例为50%:住院报销比例,A类医疗机构80%,B类医疗机构60.若张华参加了城乡基本医疗保险,他因CRP偏高选择在某医疗机构治疗,医生为张华提供了三种治疗方案:

方案一:门诊治疗,预计每天诊疗费80元;

方案二:住院治疗,A类医疗机构,入院检查需花费600元,预计每天诊疗费100元;

方案三:住院治疗,B类医疗机构,入院检查需花费400元,预计每天诊疗费40元;

若张华需要经过连续治疗n天,,请你为张华选择最经济实惠的治疗方案.

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,菱形与正所在平面互相垂直,平面.

(1)证明:平面

(2)若,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】绿水青山就是金山银山.某山村为做好水土保持,退耕还林,在本村的山坡上种植水果,并推出山村游等旅游项目.为预估今年7月份游客购买水果的情况,随机抽样统计了去年7月份100名游客的购买金额.分组如下: ,得到如图所示的频率分布直方图:

(1)请用抽样的数据估计今年7月份游客人均购买水果的金额(同一组中的数据用该组区间中点作代表).

(2)若把去年7月份购买水果不低于80元的游客,称为“水果达人”. 填写下面列联表,并根据列联表判断是否有95%的把握认为“水果达人”与性别有关系?

水果达人

非水果达人

合计

10

30

合计

(3)为吸引顾客,商家特推出两种促销方案.方案一:每满80元可立减10元;方案二:金额超过80元可抽奖三次,每次中奖的概率为,且每次抽奖互不影响,中奖1次打9折,中奖2次打8折,中奖3次打7折.若每斤水果10元,你打算购买12斤水果,请从实际付款金额的数学期望的角度分析应该选择哪种优惠方案.

附:参考公式和数据:.临界值表:

2.072

2.706

3.841

6.635

7.879

0.150

0.100

0.050

0.010

0.005

查看答案和解析>>

同步练习册答案