精英家教网 > 高中数学 > 题目详情
已知函数f(x)是定义在R上的偶函数,已知x≥0时,f(x)=x2-2x.
(1)画出偶函数f(x)的图象的草图,并求函数f(x)的单调递增区间;
(2)当直线y=k(k∈R)与函数y=f(x)恰有4个交点时,求k的取值范围.
考点:二次函数的性质,函数奇偶性的性质
专题:函数的性质及应用
分析:(1)根据已知条件画出函数f(x)的图象,根据图象即可得到f(x)的单调递增区间;
(2)通过图象即可得到k的取值范围.
解答: 解:(1)画出f(x)的图象如下图:

由图象知,函数f(x)单调递增区间为[-1,0],[1,+∞);
(2)由图象可知,当-1<k<0时,直线与函数y=f(x)的图象的交点个数为4;
∴k的取值范围为(-1,0).
点评:考查偶函数的概念,偶函数图象的特点,以及根据图象求函数的单调区间,以及根据图象得出使得y=k和f(x)图象有四个交点时k的取值范围.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图1,边长为2的正方形ABCD中,E是AB边的中点,F是BC边上的一点,对角线AC分别交DE、DF于M、N两点,将△DAE及△DCF折起,使A、C重合于G点,构成如图2所示的几何体.
(Ⅰ)求证:GD⊥EF;
(Ⅱ)若EF∥平面GMN,求三棱锥G-EFD的体积VG-EFD

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
2x(x≤0)
log2x(x>0)
,g(x)=
2
x
,若f[g(a)]≤1,则实数a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2+ax+b.
(Ⅰ)设b=a,若|f(x)|在x∈[0,1]上单调递增,求实数a的取值范围;
(Ⅱ)求证:存在x0∈[-1,1],使|f(x0)|≥|a|.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=ax2+xlnx,(a∈R)
(1)当a=0时,求f(x)的最小值;
(2)在区间(1,2)内任取两个实数p,q(p≠q),若不等式
f(p+1)-f(q+1)
p-q
>1恒成立,求实数a的取值范围;
(3)求证:
ln2
23
+
ln3
33
+
ln
43
+…+
lnn
n3
1
e
(其中n>1,n∈N*,e=2.71828…).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x•lnx,g(x)=ax3-
1
2
x-
2
3e

(1)求f(x)的单调增区间和最小值;
(2)若函数y=f(x)与函数y=g(x)在交点处存在公共切线,求实数a的值;
(3)若x∈(0,e2]时,函数y=f(x)的图象恰好位于两条平行直线l1:y=kx;l2:y=kx+m之间,当l1与l2间的距离最小时,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=lnx+
1-x
ax
,其中a为大于零的常数.
(Ⅰ)若函数f(x)在区间[1,+∞)内单调递增,求a的取值范围;
(Ⅱ)证明(a2+1)xlnx≥x-1,在区间[1,+∞)恒成立;
(Ⅲ)求函数f(x)在区间[1,e]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设a,b∈R+,a+b-2a2b2=4,则
1
a
+
1
b
的最小值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

对于函数f(x)定义域中任意的x1,x2(x1≠x2)有如下结论
①f(x1+x2)=f(x1)•f(x2);
②f(x1•x2)=f(x1)+f(x2);
f(x1)-f(x2)
x1-x2
<0;
④f(
x1+x2
2
)>
f(x1)+f(x2)
2

当f(x)=lnx时,上述结论中正确的序号是(  )
A、①③B、②③C、②④D、③④

查看答案和解析>>

同步练习册答案