(本题满分15分)
已知数列{an}的前n项和为Sn,且a1=1,Sn=n2an(n∈N*).
(1)试求出S1,S2,S3,S4,并猜想Sn的表达式;
(2)用数学纳法证明你的猜想,并求出an的表达式.
(1)解 ∵an=Sn-Sn-1(n≥2)
∴Sn=n2(Sn-Sn-1),∴Sn=
Sn-1(n≥2)
∵a1=1,∴S1=a1=1.
∴S2=
,S3=
=
,S4=
, ┄┄┄┄┄┄┄┄┄┄6分
猜想Sn=
(n∈N*). ┄┄┄┄┄┄┄┄┄┄7分
(2)证明 ①当n=1时,S1=1成立.
②假设n=k(k≥1,k∈N*)时,等式成立,即Sk=
,
当n=k+1时,
Sk+1=(k+1)2·ak+1=ak+1+Sk=ak+1+
,
∴ak+1=
,
∴Sk+1=(k+1)2·ak+1=
=
,
∴n=k+1时等式也成立,得证.
∴根据①、②可知,对于任意n∈N*,等式均成立.┄┄┄┄┄┄┄┄┄┄13分
又∵ak+1=
,∴an=
. ┄┄┄┄┄┄┄┄┄15分
解析
科目:高中数学 来源:2013届浙江省余姚中学高三上学期期中考试文科数学试卷(带解析) 题型:解答题
(本题满分15分)已知点
(0,1),
,直线
、
都是圆
的切线(
点不在
轴上).
(Ⅰ)求过点
且焦点在
轴上的抛物线的标准方程;
(Ⅱ)过点(1,0)作直线
与(Ⅰ)中的抛物线相交于![]()
两点,问是否存在定点
使
为常数?若存在,求出点
的坐标及常数;若不存在,请说明理由
查看答案和解析>>
科目:高中数学 来源:2011-2012学年浙江省桐乡市高三10月月考理科数学 题型:解答题
(本题满分15分)已知函数
.
(Ⅰ)若
为定义域上的单调函数,求实数m的取值范围;
(Ⅱ)当
时,求函数
的最大值;
(Ⅲ)当
,且
时,证明:
.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年浙江省桐乡市高三下学期2月模拟考试文科数学 题型:解答题
(本题满分15分)已知圆N:
和抛物线C:
,圆的切线
与抛物线C交于不同的两点A,B,
(1)当直线
的斜率为1时,求线段AB的长;
(2)设点M和点N关于直线
对称,问是否存在直线
使得
?若存在,求出直线
的方程;若不存在,请说明理由.
![]()
查看答案和解析>>
科目:高中数学 来源:杭州市2010年第二次高考科目教学质量检测 题型:解答题
(本题满分15分)已知直线
,曲线![]()
(1)若
且直线与曲线恰有三个公共点时,求实数
的取值;
(2)若
,直线与曲线M的交点依次为A,B,C,D四点,求|AB+|CD|的取值范围。[来源:Z+xx+k.Com]
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com