分析 (1)根据频率和为1,求出a的值;
(2)根据分层抽样方法特点,计算出总人数以及应抽取的人数比即可;
(3)根据频率分布直方图,计算众数、中位数与平均数.
解答 解:(1)因为直方图中的各个矩形的面积之和为1,
所以有10×(0.005+0.035+a+0.020+0.010)=1,
解得a=0.030;
(2)由直方图知,三个区域内的学生总数为
100×10×(0.030+0.020+0.010)=60人,
其中身高在[140,150]内的学生人数为10人,
所以从身高在[140,150]范围内抽取的学生人数为
$\frac{18}{60}$×10=3人;
(3)根据频率分布直方图知,身高在[110,120)内的小矩形图最高,
所以该组数据的众数为$\frac{110+120}{2}$=115cm;
又0.005×10+0.035×10=0.4<0.5,
0.4+0.030×10=0.7>0.5,
所以中位数在[120,130)内,可设为x,
则(x-120)×0.030+0.4=0.5,
解得x=123.33,
所以中位数为123.33cm;
根据频率分布直方图,计算平均数为
105×0.05+115×0.35+125×0.3+135×0.2+145×0.1=124.5cm
点评 本题考查了频率分布直方图的应用问题,也考查了分层抽样方法的应用问题,考查了众数、中位数和平均数的计算问题,是基础题目.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | $\frac{1}{2}$ | C. | $\frac{1}{3}$ | D. | $\frac{1}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 3 | C. | 4 | D. | 6 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{4}$ | B. | $\frac{3}{4}$ | C. | $\frac{1}{4}或\frac{5}{4}$ | D. | $\frac{3}{4}或\frac{5}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com