精英家教网 > 高中数学 > 题目详情
定义在R上的奇函数f(x)满足:f(-1)=-2,当x>0时f′(x)>2,则不等式f(x)>2x的解集为(  )
A.(-1,0)∪(1,+∞)B.(-1,0)∪(0,1)C.(-1,+∞)D.(1,+∞)
构造函数F(x)=f(x)-2x,则当x>0时,F′(x)=f′(x)-2,因为f′(x)>2,
所以F′(x)=f′(x)-2>0,即函数F(x)在(0,+∞)上单调递增.
因为f(x)为奇函数,所以函数F(x)=f(x)-2x也为奇函数.
所以F(-1)=f(-1)-2(-1)=-2+2=0,且F(1)=0,
所以当x>1或-1<x<0时,F(x)>0,即此时f(x)>2x,
所以不等式f(x)>2x的解集为(-1,0)∪(1,+∞),
故选A.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

定义在R上的奇函数f(x)满足f(2x)=-2f(x),f(-1)=
1
2
,则f(2)的值为(  )
A、-1B、-2C、2D、1

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的奇函数f(x)在(0,+∞)上是增函数,又f(-3)=0,则不等式xf(x)<0的解集为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的奇函数f(x)在[0,+∞)是增函数,判断f(x)在(-∞,0)上的增减性,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:

定义在R上的奇函数f(x)满足:当x>0时,f(x)=2010x+log2010x,则方程f(x)=0的实根的个数为
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的奇函数f(x),当x≥0时,f(x)=x3+x2,则f(x)=
x3+x2    x≥0
 
x3-x2     x<0
x3+x2    x≥0
 
x3-x2     x<0

查看答案和解析>>

同步练习册答案