(本小题满分14分)
设
是定义在[-1,1]上的偶函数,
的图象与
的图象关于直线
对称,且当x∈[ 2,3 ] 时,
222233.
(1)求
的解析式;
(2)若
在
上为增函数,求
的取值范围;
(3)是否存在正整数
,使
的图象的最高点落在直线
上?若存在,求出
的值;若不存在,请说明理由.
,a>6;存在a = 8满足题设
解:(1)当x∈[-1,0]时,2-x∈[2,3],f(x)=g(2-x)= -2ax+4x3;当x∈
时,f(x)=f(-x)=2ax-4x3,
∴
………………………………………4分
(2)由题设知,
>0对x∈
恒成立,即2a-12x2>0对x∈
恒成立,于是,a>6x2,从而a>(6x2)max=6.………………………8分
(3)因f(x)为偶函数,故只需研究函数f(x)=2ax-4x3在x∈
的最大值.
令
=2a-12x2=0,得
.…10分 若
∈
,即0<a≤6,则
,
故此时不存在符合题意的
;
若
>1,即a>6,则
在
上为增函数,于是
.
令2a-4=12,故a=8. 综上,存在a = 8满足题设.………………13分
科目:高中数学 来源: 题型:
| 3 |
| π |
| 4 |
| π |
| 4 |
| π |
| 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分14分)设椭圆C1的方程为
(a>b>0),曲线C2的方程为y=
,且曲线C1与C2在第一象限内只有一个公共点P。(1)试用a表示点P的坐标;(2)设A、B是椭圆C1的两个焦点,当a变化时,求△ABP的面积函数S(a)的值域;(3)记min{y1,y2,……,yn}为y1,y2,……,yn中最小的一个。设g(a)是以椭圆C1的半焦距为边长的正方形的面积,试求函数f(a)=min{g(a), S(a)}的表达式。
查看答案和解析>>
科目:高中数学 来源:2011年江西省抚州市教研室高二上学期期末数学理卷(A) 题型:解答题
(本小题满分14分)
已知
=2,点(
)在函数
的图像上,其中
=
.
(1)证明:数列
}是等比数列;
(2)设
,求
及数列{
}的通项公式;
(3)记
,求数列{
}的前n项和
,并证明
.
查看答案和解析>>
科目:高中数学 来源:2015届山东省威海市高一上学期期末考试数学试卷(解析版) 题型:解答题
(本小题满分14分)
某网店对一应季商品过去20天的销售价格及销售量进行了监测统计发现,第
天(
)的销售价格(单位:元)为
,第
天的销售量为
,已知该商品成本为每件25元.
(Ⅰ)写出销售额
关于第
天的函数关系式;
(Ⅱ)求该商品第7天的利润;
(Ⅲ)该商品第几天的利润最大?并求出最大利润.
查看答案和解析>>
科目:高中数学 来源:2011-2012学年广东省高三下学期第一次月考文科数学试卷(解析版) 题型:解答题
(本小题满分14分)已知
的图像在点
处的切线与直线
平行.
⑴ 求
,
满足的关系式;
⑵ 若
上恒成立,求
的取值范围;
⑶ 证明:
(
)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com