精英家教网 > 高中数学 > 题目详情

已知向量数学公式=(an,2n),数学公式=(2n+1,-an+1),n∈N*,向量数学公式数学公式 垂直,且a1=1
(1)求数列{an}的通项公式;
(2)若数列{bn}满足bn=log2an+1,求数列{an•bn}的前n项和Sn

解:(1)∵向量 垂直,∴2nan+1-2n+1an=0,
即2nan+1=2n+1an,…(2分)
=2∴{an}是以1为首项,2为公比的等比数列…(4分)
∴a=2n-1. …(5分)
(2)∵bn=log2a2+1,∴bn=n
∴an•bn=n•2n-1,…(8分)
∴Sn=1+2×2+3×22+…+(n-1)×2n-2+n×2n-1 …①
∴2Sn=1×2+2×22+…(n-1)×2n-1+n×2n …②…(10分)
由①-②得,-Sn=1+2+22+…+2n-1-n×2n==(1-n)•2n=(1-n)2n-1…(12分)
∴Sn=1-(n+1)2n+n•2n+1=1+(n-1)•2n.…(14分)
分析:(1)由向量 垂直,得2nan+1=2n+1an,∴{an}是以1为首项,2为公比的等比数列,利用等比数列的通项公式可求an
(2)由an•bn=n•2n-1,则Sn=1+2×2+3×22+…+(n-1)×2n-2+n×2n-1,利用错位相减法可求其和.
点评:本题主要利用数列的递推公式求解数列的通项公式,等比数列的通项公式的应用,数列求和的错位相减的应用,属于综合试题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知向量
a
=(an+1,1),
b
=(an+1,1),n∈N+,且a1=2,
a
b
,则数列{an}的前5项和为(  )
A、10B、14C、20D、27

查看答案和解析>>

科目:高中数学 来源: 题型:

有下列命题:
①若cosα>0,则角α是第一、四象限角:
②已知向量
a
=(t,2),
b
=(-3,6),若向量
a
b
的夹角为锐角,则实数t的取值范围是t<4;
③数列{an}为等比数列的充要条件为an=a1qn-1(q为常数);
④使函数f(x)=log2(ax2+2x+1)的定义域为R的实数a的取值集合为(1,+∞).
其中错误命题的序号是
①②③
①②③

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•焦作模拟)已知向量
a
=(an,2),
b
=(an+1
2
5
)且a1=1,若数列{an}的前n项和为Sn,且
a
b
,则Sn=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

有下列命题:
①如果幂函数f (x)=(m2-3m+3)xm2-m-1的图象不过原点,则m=l或2;
②数列{an}为等比数列的充要条件为an=a1qn-1(q为常数):
③已知向量
a
=(t,2),
b
=(-3,6),若向量
a
b
的夹角为锐角,则实数t的取值范围是t<4; 
④函数f (x)=xsinx在(0,π)上有最大值,没有最小值.
其中正确命题的个数为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•惠州模拟)已知向量
p
=(an,2n),
q
=(2n+1,-an+1),n∈N*,向量
p
 与
q
 垂直,且a1=1
(1)求数列{an}的通项公式;
(2)若数列{bn}满足bn=log2an+1,求数列{an•bn}的前n项和Sn

查看答案和解析>>

同步练习册答案