【题目】已知函数
,
.
(Ⅰ)讨论函数
的单调性;
(Ⅱ)若函数
有两个零点,求实数
的取值范围.
科目:高中数学 来源: 题型:
【题目】已知下列命题:
①函数
在
上单调递减,在
上单调递增;
②若函数
在
上有两个零点,则
的取值范围是
;
③函数
在
上单调递减;
④当
时,函数
的最大值为
.
上述命题正确的是__________(填序号).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,已知椭圆
的焦距为4,且过点
.
(1)求椭圆
的方程
(2)设椭圆
的上顶点为
,右焦点为
,直线
与椭圆交于
、
两点,问是否存在直线
,使得
为
的垂心,若存在,求出直线
的方程;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=x+2﹣2cosx
(1)求函数f(x)在[
,
]上的最值:
(2)若存在x∈(0,
)使不等式f(x)≤ax成立,求实数a的取值范围
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
离心率为
,四个顶点构成的四边形的面积是4.
(1)求椭圆C的标准方程;
(2)若直线
与椭圆C交于P,Q均在第一象限,直线OP,OQ的斜率分别为
,
,且
(其中O为坐标原点).证明:直线l的斜率k为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平行四边形
中,
,
,过
点作
的垂线,交
的延长线于点
,
.连结
,交
于点
,如图1,将
沿
折起,使得点
到达点
的位置,如图2.
![]()
(1)证明:平面
平面
;
(2)若
为
的中点,
为
的中点,且平面
平面
,求三棱锥
的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将函数g(x)=﹣4sin2(
)+2图象上点的横坐标缩短到原来的
倍(纵坐标不变),再向右平移
个单位长度,得到函数f(x)的图象,则下列说法正确的是( )
A.函数f(x)在区间[
,
]上单调递减
B.函数f(x)的最小正周期为2π
C.函数f(x)在区间[
,
]的最小值为![]()
D.x
是函数f(x)的一条对称轴
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)
x+alnx.
(1)求f(x)在(1,f(1))处的切线方程(用含a的式子表示)
(2)讨论f(x)的单调性;
(3)若f(x)存在两个极值点x1,x2,证明:
.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com