【题目】在平行四边形
中,
,
,过
点作
的垂线,交
的延长线于点
,
.连结
,交
于点
,如图1,将
沿
折起,使得点
到达点
的位置,如图2.
![]()
(1)证明:平面
平面
;
(2)若
为
的中点,
为
的中点,且平面
平面
,求三棱锥
的体积.
【答案】(1)见解析; (2)
.
【解析】
(1)先求得
,
,可得
,结合
,可得
,
,
,可证明
平面
,利用面面垂直的判定定理可得平面
平面
;(2)由面面垂直的性质可得
平面
,取
的中点为
,连结
,则
,可证明
平面
,由此利用棱锥的体积公式可得三棱锥
的体积.
![]()
(1)如题图1,在
中,
,
,所以
.
在
中,
,所以
.
所以
.
如题图2,
,
.又因为
,所以
,
,
,
所以
平面
,又因为
平面
,所以平面
平面
.
(2)解法一:因为平面
平面
,
平面
平面
,
平面
,
,所以
平面
.
取
的中点为
,连结
,则
,所以
平面
.
即
为三棱锥
的高.
且
.
因为,三棱锥
的体积为
.
![]()
解法二:因为平面
平面
,平面
平面
,
平面
,
,所以
平面
.
因为
为
的中点.
所以三棱锥
的高等于
.
因为
为
的中点,所以
的面积是四边形
的面积的
,
从而三棱锥
的体积是四棱锥
的体积的
.
面
,
所以三棱锥
的体积为
.
科目:高中数学 来源: 题型:
【题目】赵爽是我国古代数学家、天文学家,大约在公元222年,赵爽为《周髀算经》一书作序时,介绍了“勾股圆方图”,亦称“赵爽弦图”(以弦为边长得到的正方形由4个全等的直角三角形再加上中间的一个小正方形组成的),类比“赵爽弦图”,可类似地构造如图所示的图形,它是由3个全等的三角形与中间的一个小等边三角形拼成的一个大等边三角形,设
,则( )
![]()
A.
B. ![]()
C.
D. ![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在矩形ABCD中,
,E为AB的中点.将
沿DE翻折,得到四棱锥
.设
的中点为M,在翻折过程中,有下列三个命题:
![]()
①总有
平面
;
②线段BM的长为定值;
③存在某个位置,使DE与
所成的角为90°.
其中正确的命题是_______.(写出所有正确命题的序号)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在直角坐标系
中,直线
的参数方程为
(
为参数),以坐标原点为极点,
轴的正半轴为极轴建立极坐标系,并使得它与直角坐标系
有相同的长度单位,曲线
的极坐标方程为
.
(1)求直线
的普通方程和曲线
的直角坐标方程;
(2)设曲线
与直线
交于
、
两点,且
点的坐标为
,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线
为参数),以坐标原点为极点,
轴为极轴建立极坐标系,曲线
.
(1)求曲线
的直角坐标方程和直线
的普通方程;
(2)求与直线
平行,且被曲线
截得的弦长为
的直线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知过定点
且与直线
垂直的直线与
轴、
轴分别交于点
,点
满足
.
(1)若以原点为圆心的圆
与
有唯一公共点,求圆
的轨迹方程;
(2)求能覆盖
的最小圆的面积;
(3)在(1)的条件下,点
在直线
上,圆
上总存在两个不同的点
使得![]()
为坐标原点),求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为研究男、女生的身高差异,现随机从高二某班选出男生、女生各
人,并测量他们的身高,测量结果如下(单位:厘米):
男:
![]()
女:
![]()
根据测量结果完成身高的茎叶图(单位:厘米),并分别求出男、女生身高的平均值.
![]()
请根据测量结果得到
名学生身高的中位数中位数
(单位:厘米),将男、女身高不低于
和低于
的人数填入下表中,并判断是否有
的把握认为男、女身高有差异?
![]()
参照公式:![]()
![]()
若男生身高低于165厘米为偏矮,不低于165厘米且低于175厘米为正常,不低于175厘米为偏高,假设可以用测量结果的频率代替概率,试求从高三的男生中任意选出2人,恰有1人身高属于正常的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com