【题目】已知过定点
且与直线
垂直的直线与
轴、
轴分别交于点
,点
满足
.
(1)若以原点为圆心的圆
与
有唯一公共点,求圆
的轨迹方程;
(2)求能覆盖
的最小圆的面积;
(3)在(1)的条件下,点
在直线
上,圆
上总存在两个不同的点
使得![]()
为坐标原点),求
的取值范围.
【答案】(1)
(2)
(3) ![]()
【解析】
(1)
,得
在直线
上,求出
,确定圆的半径则方程可求
(2)由几何关系得能覆盖三角形ABC的最小圆是以AB为直径的圆,计算
,则圆的面积可求
(3)由
,则有OP与MN互相垂直平分,得
利用点在直线上得
的不等式求解
(1)因为
,所以
在线段
的垂直平分线上,即在直线
上,
故
以原点为圆心的圆
与
有唯一公共点,
此时圆的半径
故:圆
的方程为
(2)由于三角形ABC为钝角三角形且AB为最长边,故能覆盖三角形ABC的最小圆是以AB为直径的圆
由于点
,所以
故该圆的半径为![]()
所以能覆盖该三角形的最小圆面积![]()
(3)
span>(O为坐标原点),则有OP与MN互相垂直平分,
所以圆心到直线MN的距离小于1.即又![]()
又
,代入(1)得
![]()
所以实数
的取值范围为![]()
科目:高中数学 来源: 题型:
【题目】已知非零数列
的递推公式为
,
.
(1)求证数列
是等比数列;
(2)若关于
的不等式
有解,求整数
的最小值;
(3)在数列
中,是否一定存在首项、第
项、第
项
,使得这三项依次成等差数列?若存在,请指出
所满足的条件;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平行四边形
中,
,
,过
点作
的垂线,交
的延长线于点
,
.连结
,交
于点
,如图1,将
沿
折起,使得点
到达点
的位置,如图2.
![]()
(1)证明:平面
平面
;
(2)若
为
的中点,
为
的中点,且平面
平面
,求三棱锥
的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知集合
,其中
,
.如果集合
满足:对于任意的
,都有
,那么称集合
具有性质
.
(Ⅰ)写出一个具有性质
的集合
;
(Ⅱ)证明:对任意具有性质
的集合
,
;
(Ⅲ)求具有性质
的集合
的个数.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的短轴长为
,离心率为
.
(Ⅰ)求椭圆
的标准方程;
(Ⅱ)设椭圆
的左,右焦点分别为
,
左,右顶点分别为
,
,点
,
,为椭圆
上位于
轴上方的两点,且
,直线
的斜率为
,记直线
,
的斜率分别为
,
,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】为了调查消费者的维权意识,青岛二中的学生记者在五四广场随机调查了120名市民,按他们的年龄分组:第1组[20.30),第2组[30,40),第3组[40,50),第4组[50,60),第5组[60,70),得到的频率分布直方图如图所示.
![]()
(1)若要从被调查的市民中选1人采访,求被采访人恰好在第2组或第5组的概率;
(2)已知第1组市民中男性有2人,学生要从第1组中随机抽取3名市民组成维权志愿者服务队,求至少有两名女性的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图①,在等腰梯形
中,
,
,
分别为
,
的中点,
,
为
中点现将四边形
沿
折起,使平面
平面
,得到如图②所示的多面体在图②中,
![]()
(1)证明:
;
(2)求二面角
的余弦值。
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,五边形ABSCD中,四边形ABCD为矩形,AB=1,△BSC为边长为2的正三角形,将△BSC沿BC折起,使得侧面SAD垂直于平面ABCD,E、F分别为SA、DC的中点.
![]()
(1)求证:EF∥面SBC;
(2)求四棱锥S﹣ABCD的侧面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com