精英家教网 > 高中数学 > 题目详情

【题目】已知非零数列的递推公式为,.

(1)求证数列是等比数列;

(2)若关于的不等式有解,求整数的最小值;

(3)在数列中,是否一定存在首项、第项、第,使得这三项依次成等差数列?若存在,请指出所满足的条件;若不存在,请说明理由.

【答案】(1)证明见解析(2)整数的最小值为4.(3)存在,当且仅当,且为不小于4的偶数时,成等差数列

【解析】

(1)根据要证明是等比数列的数列,对已知的等式进行恒等变形,即可证明本结论;

(2)利用差比判断数列的单调性,利用单调性求出整数的最小值;

(3)根据(1)求出数列的通项公式,结合已知,可以证明出存在首项、第项、第,使得这三项依次成等差数列.

(1)由,得

,所以是首项为2,公比为2的等比数列.

(2)由(1)可得:,所以已知的不等式等价于

所以单调递增,则

于是,即,故整数的最小值为4.

(3)由上面得,则

要使成等差数列,只需

因为,则上式左端;又因为上式右端

于是当且仅当,且为不小于4的偶数时,成等差数列.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的中心在坐标原点,焦点在坐标轴上,且经过三点.

1)求椭圆的方程;

2)若直线)与椭圆交于两点,证明直线与直线的交点在直线上.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数

(1)若曲线在点处的切线与轴平行,求

(2)当时,函数的图象恒在轴上方,求的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某研究所计划利用神七宇宙飞船进行新产品搭载实验,计划搭载新产品AB,要根据该产品的研制成本、产品重量、搭载实验费用和预计产生收益来决定具体安排,通过调查,有关数据如表:


产品A()

产品B()


研制成本与塔载
费用之和(万元/)

20

30

计划最大资
金额300万元

产品重量(千克/)

10

5

最大搭载
重量110千克

预计收益(万元/)

80

60


试问:如何安排这两种产品的件数进行搭载,才能使总预计收益达到最大,最大收益是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,设,且,记;

(1)设,其中,试求的单调区间;

(2)试判断弦的斜率的大小关系,并证明;

(3)证明:当时,.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求函数的单调区间和极值;

(2)若不等式在区间上恒成立,求实数的取值范围;

(3)求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】赵爽是我国古代数学家、天文学家,大约在公元222年,赵爽为《周髀算经》一书作序时,介绍了勾股圆方图,亦称赵爽弦图(以弦为边长得到的正方形由4个全等的直角三角形再加上中间的一个小正方形组成的),类比赵爽弦图,可类似地构造如图所示的图形,它是由3个全等的三角形与中间的一个小等边三角形拼成的一个大等边三角形,设,则(

A. B.

C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)当时,判断函数的单调性;

(Ⅱ)当时,证明:.(为自然对数的底数)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知过定点且与直线垂直的直线与轴、轴分别交于点,点满足.

1)若以原点为圆心的圆有唯一公共点,求圆的轨迹方程;

2)求能覆盖的最小圆的面积;

3)在(1)的条件下,点在直线上,圆上总存在两个不同的点使得为坐标原点),求的取值范围.

查看答案和解析>>

同步练习册答案