【题目】已知集合,其中,.如果集合满足:对于任意的,都有,那么称集合具有性质.
(Ⅰ)写出一个具有性质的集合;
(Ⅱ)证明:对任意具有性质的集合,;
(Ⅲ)求具有性质的集合的个数.
【答案】(Ⅰ);(Ⅱ)详见解析;(Ⅲ).
【解析】
(Ⅰ);(Ⅱ)利用反证法证明不存在,使得;(Ⅲ)设为使得的最大正整数,则.再证明,集合中大于2000的元素至多有19个,所以.再证明不可能成立.即成立.再推理得到可能取的值为981,982,…,1000,故符合条件的集合个数为.因此,满足条件的集合的个数为.
解:(Ⅰ)
(Ⅱ)证明:假设存在,使得,显然,取,则
,由题意,而为集合中元素的最大值,所以,,矛盾,假设不成立,
所以,不存在,使得.
(Ⅲ)设为使得的最大正整数,则.
若,则存在正整数,使得,所以.
同(Ⅱ)不可能属于集合.
于是,由题意知,
所以,,集合中大于2000的元素至多有19个,所以.
下面证明不可能成立.
假设,则存在正整数,使得,显然,
所以存在正整数使得.
而与为使得的最大正整数矛盾,所以不可能成立.即成立.
当时,对于任意的满足显然有成立.
若,则,即,
所以,,其中均为符合题意的集合.
而可能取的值为981,982,…,1000,故符合条件的集合个数为
.
因此,满足条件的集合的个数为.
科目:高中数学 来源: 题型:
【题目】如图,在矩形ABCD中,,E为AB的中点.将沿DE翻折,得到四棱锥.设的中点为M,在翻折过程中,有下列三个命题:
①总有平面;
②线段BM的长为定值;
③存在某个位置,使DE与所成的角为90°.
其中正确的命题是_______.(写出所有正确命题的序号)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线为参数),以坐标原点为极点,轴为极轴建立极坐标系,曲线.
(1)求曲线的直角坐标方程和直线的普通方程;
(2)求与直线平行,且被曲线截得的弦长为的直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某机构对A市居民手机内安装的“APP”(英文Application的缩写,一般指手机软件)的个数和用途进行调研,在使用智能手机的居民中随机抽取了100人,获得了他们手机内安装APP的个数,整理得到如图所示频率分布直方图:
(Ⅰ)从A市随机抽取一名使用智能手机的居民,试估计该居民手机内安装APP的个数不低于30的概率;
(Ⅱ)从A市随机抽取3名使用智能手机的居民进一步做调研,用X表示这3人中手机内安装APP的个数在[20,40)的人数.
①求随机变量X的分布列及数学期望;
②用Y1表示这3人中安装APP个数低于20的人数,用Y2表示这3人中手机内安装APP的个数不低于40的人数.试比较EY1和EY2的大小.(只需写出结论)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知过定点且与直线垂直的直线与轴、轴分别交于点,点满足.
(1)若以原点为圆心的圆与有唯一公共点,求圆的轨迹方程;
(2)求能覆盖的最小圆的面积;
(3)在(1)的条件下,点在直线上,圆上总存在两个不同的点使得为坐标原点),求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆:的四个顶点围成的四边形的面积为,原点到直线的距离为.
(1)求椭圆的方程;
(2)已知定点,是否存在过的直线,使与椭圆交于,两点,且以为直径的圆过椭圆的左顶点?若存在,求出的方程:若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,过点作直线交轴于A点、交轴于B点,且P位于AB两点之间.
(1)若,求直线的方程;
(2)求当取得最小值时直线的方程;
(3)当面积最小值时的直线方程.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com