精英家教网 > 高中数学 > 题目详情

【题目】在直角坐标系中,过点作直线轴于A点、交轴于B点,且P位于AB两点之间.

1)若,求直线的方程;

2)求当取得最小值时直线的方程;

3)当面积最小值时的直线方程.

【答案】1;(2;(3

【解析】

设直线可求出.结合位于之间,建立关于的不等式,可得

1)由的坐标,得出向量坐标,从而将化为关于的方程,解出值,即得直线的方程;

2)由向量数量积的坐标运算公式,得出关于的表达式,再用基本不等式得到取得最小值时的斜率,从而得到直线的方程.

3)求出,再利用基本不等式求最小值,从而得到等号成立的条件,即,由此能求出当面积最小值时的直线方程.

由题意知,直线的斜率存在且

,得令,得,所以

再令,得,所以

∵点位于两点之间,∴,解得

1)∵,∴,解得

∴直线的方程为,整理得

2)∵,∴

,即时,等号成立.

∴当取得最小值时直线的方程为

化为一般式:

3)∵

时,即时,取等号,

∴当面积最小值时的直线方程为,即

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】一个经销鲜花产品的微店,为保障售出的百合花品质,每天从云南鲜花基地空运固定数量的百合花,如有剩余则免费分赠给第二天购花顾客,如果不足,则从本地鲜花供应商处进货.今年四月前10天,微店百合花的售价为每支2元,云南空运来的百合花每支进价1.6元,本地供应商处百合花每支进价1.8元,微店这10天的订单中百合花的需求量(单位:支)依次为:251,255,231,243,263,241,265,255,244,252.

(Ⅰ)求今年四月前10天订单中百合花需求量的平均数和众数,并完成频率分布直方图;

(Ⅱ)预计四月的后20天,订单中百合花需求量的频率分布与四月前10天相同,百合花进货价格与售价均不变,请根据(Ⅰ)中频率分布直方图判断(同一组中的需求量数据用该组区间的中点值作代表,位于各区间的频率代替位于该区间的概率),微店每天从云南固定空运250支,还是255支百合花,四月后20天百合花销售总利润会更大?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合,其中.如果集合满足:对于任意的,都有,那么称集合具有性质

(Ⅰ)写出一个具有性质的集合

(Ⅱ)证明:对任意具有性质的集合

(Ⅲ)求具有性质的集合的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了调查消费者的维权意识,青岛二中的学生记者在五四广场随机调查了120名市民,按他们的年龄分组:第1[20.30),第2[3040),第3[4050),第4[5060),第5[6070),得到的频率分布直方图如图所示.

1)若要从被调查的市民中选1人采访,求被采访人恰好在第2组或第5组的概率;

2)已知第1组市民中男性有2人,学生要从第1组中随机抽取3名市民组成维权志愿者服务队,求至少有两名女性的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知椭圆C1ab0)的右焦点为FA20)是椭圆的右顶点,过F且垂直于x轴的直线交椭圆于PQ两点,且|PQ|3

1)求椭圆的方程;

2)过点A的直线l与椭圆交于另一点B,垂直于l的直线l与直线l交于点M,与y轴交于点N,若FBFN|MO||MA|,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图①,在等腰梯形中,分别为的中点,中点现将四边形沿折起,使平面平面,得到如图②所示的多面体在图②中,

(1)证明:

(2)求二面角的余弦值。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图1,在边长为3的菱形中,已知,且.将梯形沿直线折起,使平面,如图2,分别是上的点.

(1)求证:图2中,平面平面

(2)若平面平面,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】[选修4-4:坐标系与参数方程]

在平面直角坐标系中,直线的参数方程为为参数,),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(Ⅰ)若,求直线的普通方程及曲线的直角坐标方程;

(Ⅱ)若直线与曲线有两个不同的交点,求的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某种植园在芒果临近成熟时,随机从一些芒果树上摘下100个芒果,其质量分别在(单位:克)中,经统计得频率分布直方图如图所示.

(1) 经计算估计这组数据的中位数;

(2)现按分层抽样从质量为的芒果中随机抽取个,再从这个中随机抽取个,求这个芒果中恰有个在内的概率.

(3)某经销商来收购芒果,以各组数据的中间数代表这组数据的平均值,用样本估计总体,该种植园中还未摘下的芒果大约还有个,经销商提出如下两种收购方案:

A:所以芒果以/千克收购;

B:对质量低于克的芒果以/个收购,高于或等于克的以/个收购.

通过计算确定种植园选择哪种方案获利更多?

查看答案和解析>>

同步练习册答案