【题目】已知椭圆:
的四个顶点围成的四边形的面积为
,原点到直线
的距离为
.
(1)求椭圆
的方程;
(2)已知定点
,是否存在过
的直线
,使
与椭圆
交于
,
两点,且以
为直径的圆过椭圆
的左顶点?若存在,求出
的方程:若不存在,请说明理由.
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=
x2﹣ax+(3﹣a)lnx,a∈R.
(1)若曲线y=f(x)在点(1,f(1))处的切线与直线2x﹣y+1=0垂直,求a的值;
(2)设f(x)有两个极值点x1 , x2 , 且x1<x2 , 求证:﹣5﹣f(x1)<f(x2)<﹣
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在高中学习过程中,同学们经常这样说“如果物理成绩好,那么学习数学就没什么问题”某班针对“高中生物理对数学学习的影响”进行研究,得到了学生的物理成绩与数学成绩具有线性相关关系的结论,现从该班随机抽取5名学生在一次考试中的物理和数学成绩,如表:
编号 | 1 | 2 | 3 | 4 | 5 |
物理(x) | 90 | 85 | 74 | 68 | 63 |
数学(y) | 130 | 125 | 110 | 95 | 90 |
(参考公式:b=
,
=
b
,)参考数据:902+852+742+682+632=29394
90×130+85×125+74×110+68×95+63×90=42595.
(1)求数学y成绩关于物理成绩x的线性回归方程
=
x+
(b精确到0.1),若某位学生的物理成绩为80分时,预测他的物理成绩.
(2)要从抽取的这五位学生中随机选出三位参加一项知识竞赛,以X表示选中的学生的数学成绩高于100分的人数,求随机变量X的分布列及数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设对于任意实数x,不等式|x+6|+|x﹣1|≥m恒成立. (I) 求m 的取值范围;
(Ⅱ)当m取最大值时,解关于x的不等式:|x﹣4|﹣3x≤2m﹣9.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在三棱柱ABC﹣A1B1C1中,侧棱BB1⊥底面A1B1C1 , D为AC 的中点,A1B1=BB1=2,A1C1=BC1 , ∠A1C1B=60°. ![]()
(Ⅰ)求证:AB1∥平面BDC1;
(Ⅱ)求多面体A1B1C1DBA的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,抛物线
:
,直线
与抛物线
交于
,
两点.
![]()
(1)若直线
,
的斜率之积为
,证明:直线
过定点;
(2)若线段
的中点
在曲线
:
上,求
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,P为正方体ABCD﹣A1B1C1D1中AC1与BD1的交点,则△PAC在该正方体各个面上的射影可能是( ) ![]()
A.①②③④
B.①③
C.①④
D.②④
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设数列{an}的前n项和为Sn(n∈N*),且满足: ①|a1|≠|a2|;
②r(n﹣p)Sn+1=(n2+n)an+(n2﹣n﹣2)a1 , 其中r,p∈R,且r≠0.
(1)求p的值;
(2)数列{an}能否是等比数列?请说明理由;
(3)求证:当r=2时,数列{an}是等差数列.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com