精英家教网 > 高中数学 > 题目详情

【题目】在平面直角坐标系中,抛物线 ,直线与抛物线交于 两点.

(1)若直线 的斜率之积为,证明:直线过定点;

(2)若线段的中点在曲线 上,求的最大值.

【答案】(1)见解析(2)

【解析】试题分析:(1)直线的方程为,由,得: ,根据韦达定理及斜率公式可得,得,∴直线的方程为,直线过定点;(2)设,则 ,代入抛物线方程可得,由,可得,结合,利用弦长公式可得 .

试题解析:设

(1)由题意可知直线的斜率存在,设直线的方程为

,得:

由已知: ,所以

∴直线的方程为,所以直线过定点.

(2)设,则

带入 得:

,∴.

,∴,∴

又∵ ,∴

的取值范围是: .

,将代入得:

当且仅当,即时取等号,

所以的最大值为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设p:实数x满足x2﹣4ax+3a2<0,其中a>0; q:实数x满足 <0.
(1)若a=1,且p∨q为真,求实数x的取值范围;
(2)若p是q的必要不充分条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】我国古代数学著作《九章算术》有如下问题:“今有人持金出五关,前关二而税一,次关三而税一,次关四而税一,次关五而税一,次关六而税一,并五关所税,适重一斤,问本持金几何”其意思为“今有人持金出五关,第1关收税金 ,第2关收税金为剩余金的 ,第3关收税金为剩余金的 ,第4关收税金为剩余金的 ,第5关收税金为剩余金的 ,5关所收税金之和,恰好重1斤,问原来持金多少?”若将题中“5关所收税金之和,恰好重1斤,问原来持金多少?”改成假设这个原来持金为x,按此规律通过第8关,则第8关需收税金为x.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆:的四个顶点围成的四边形的面积为,原点到直线的距离为.

(1)求椭圆的方程;

(2)已知定点,是否存在过的直线,使与椭圆交于两点,且以为直径的圆过椭圆的左顶点?若存在,求出的方程:若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在几何体A1B1D1﹣ABCD中,四边形A1B1BA与A1D1DA均为直角梯形,且AA1⊥底面ABCD,四边形ABCD为正方形,AB=2A1D1=2A1B1=4,AA1=4,P为DD1的中点.
(Ⅰ)求证:AB1⊥PC;
(Ⅱ)求几何体A1B1D1﹣ABCD的表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量 ,函数
(1)求函数f(x)的单调递增区间;
(2)已知a,b,c分别为△ABC内角A,B,C的对边,其中A为锐角, ,c=1,且f(A)=1,求△ABC的面积S.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)= ,若曲线f(x)在点(e,f(e))处的切线与直线e2x﹣y+e=0垂直(其中e为自然对数的底数).
(1)若f(x)在(m,m+1)上存在极值,求实数m的取值范围;
(2)求证:当x>1时,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=sinωx﹣ cosωx(ω>0),若方程f(x)=﹣1在(0,π)上有且只有四个实数根,则实数ω的取值范围为(
A.( ]
B.( ]
C.( ]
D.( ]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 的离心率为 ,四个顶点构成的菱形的面积是4,圆M:(x+1)2+y2=r2(0<r<1).过椭圆C的上顶点A作圆M的两条切线分别与椭圆C相交于B,D两点(不同于点A),直线AB,AD的斜率分别为k1 , k2
(1)求椭圆C的方程;
(2)当r变化时,①求k1k2的值;②试问直线BD是否过某个定点?若是,求出该定点;若不是,请说明理由.

查看答案和解析>>

同步练习册答案