【题目】如图,已知直三棱柱
中,
,
,
是
的中点,
是
上一点,且
.
![]()
(Ⅰ)证明:
平面
;
(Ⅱ)求三棱锥
的体积.
科目:高中数学 来源: 题型:
【题目】某研究所计划利用“神七”宇宙飞船进行新产品搭载实验,计划搭载新产品A、B,要根据该产品的研制成本、产品重量、搭载实验费用和预计产生收益来决定具体安排,通过调查,有关数据如表:
产品A(件) | 产品B(件) | ||
研制成本与塔载 | 20 | 30 | 计划最大资 |
产品重量(千克/件) | 10 | 5 | 最大搭载 |
预计收益(万元/件) | 80 | 60 |
试问:如何安排这两种产品的件数进行搭载,才能使总预计收益达到最大,最大收益是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在直角坐标系
中,直线
的参数方程为
(
为参数),以坐标原点为极点,
轴的正半轴为极轴建立极坐标系,并使得它与直角坐标系
有相同的长度单位,曲线
的极坐标方程为
.
(1)求直线
的普通方程和曲线
的直角坐标方程;
(2)设曲线
与直线
交于
、
两点,且
点的坐标为
,求
的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线
为参数),以坐标原点为极点,
轴为极轴建立极坐标系,曲线
.
(1)求曲线
的直角坐标方程和直线
的普通方程;
(2)求与直线
平行,且被曲线
截得的弦长为
的直线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的离心率为
,M是椭圆C的上顶点,
,F2是椭圆C的焦点,
的周长是6.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)过动点P(1,t)作直线交椭圆C于A,B两点,且|PA|=|PB|,过P作直线l,使l与直线AB垂直,证明:直线l恒过定点,并求此定点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知过定点
且与直线
垂直的直线与
轴、
轴分别交于点
,点
满足
.
(1)若以原点为圆心的圆
与
有唯一公共点,求圆
的轨迹方程;
(2)求能覆盖
的最小圆的面积;
(3)在(1)的条件下,点
在直线
上,圆
上总存在两个不同的点
使得![]()
为坐标原点),求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线E:x2=2py(p>0)的焦点为F,点M是直线y=x与抛物线E在第一象限内的交点,且|MF|=5.
(1)求抛物E的方程.
(2)直线l与抛物线E相交于两点A,B,过点A,B分别作AA1⊥x轴于A1,BB1⊥x轴于B1,原点O到直线l的距离为1.求
的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C:
1(a>b>0)经过点(
,1),F(0,1)是C的一个焦点,过F点的动直线l交椭圆于A,B两点.
(1)求椭圆C的方程
(2)是否存在定点M(异于点F),对任意的动直线l都有kMA+kMB=0,若存在求出点M的坐标,若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com