精英家教网 > 高中数学 > 题目详情
已知数列{
an
λn
-(
3
λ
)n}
是等差数列,公差为2,a1,=11,an+1=λan+bn
(I)用λ表示bn
(II)若
lim
n→∞
bn+1
bn
=4,且κ≥3,求λ
的值;
(III)在(II)条件下,求数列{an}的前n项和.
分析:(I)根据所给的数列是一个等差数列且公差是2,应用等差数列的定义,写出连续两项之差的关系,得到数列{an}的递推式,代入定义的新数列,整理成最简形式.
(II)本题以数列为条件,根据两项的比值的极限是4,写出极限式,检验变量λ的值,求出结果.
(III)这是一个求数列的和的问题,写出数列的通项,发现需要分组来解,分组后一个用等比数列前n项和,一个用错位相减,这是一个典型的数列求和问题.
解答:解:(I)因为数列{
an
λn
-(
3
λ
)n}
是等差数列,公差为2所以
an+1
λn+1
-
3n+1
λn+1
=
an
λn
-
3n
λn
+2?an+1=λ•an+3n+1+2λn+1-λ•3n

∴bn=3n+1+2λn+1-λ•3n=2λn+1+3n(3-λ)??
(II)又
lim
n→∞
bn+1
bn
=
lim
n→∞
2λn+2+3n+1(3-λ)
2λn+1+3n(3-λ)
当λ=3时,
lim
n→∞
bn+1
bn
═λ=3

与已知矛盾,
∴λ≠3
当λ>3时,
lim
n→∞
bn+1
bn
=
lim
n→∞
2λ+(3-λ)(
3
λ
)
n+1
2+
3-λ
λ
(
3
λ
)
n
=λ=4

∴λ=4
(III)由已知当λ=4时,
an
4n
=
3n
4n
=
11-3
4
+2(n-1)=2n?an=2n•4n+3n

An=2×4+4×42+6×43++2n×4n=
8
9
+
6n-2
9
×4n+1
Bn=3+32+33++3n=
3n+1
2
-
3
2

∴数列{an}的前n项和Sn=An+Bn=
8
9
+
6n-2
9
×4n+1+
3n+1
2
-
3
2
=-
11
18
+
3n+1
2
+
6n-2
9
×4n+1
点评:有的数列可以通过递推关系式构造新数列,构造出一个我们较熟悉的数列,从而求出数列的通项公式.这类问题考查学生的灵活性,考查学生分析问题及运用知识解决问题的能力,这是一种化归能力的体现.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an-n}是等比数列,且满足a1=2,an+1=3an-2n+1,n∈N*.
(Ⅰ)求数列{an}的通项公式an
(Ⅱ)求数列{an}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•韶关模拟)已知数列{an} (n∈N*)满足:a1=1,an+1-sin2θ•an=cos2θ•cos2nθ,其中θ∈(0,
π
2
)

(1)当θ=
π
4
时,求{an}的通项公式;
(2)在(1)的条件下,若数列{bn}中,bn=sin
πan
2
+cos
πan-1
4
(n∈N*,n≥2)
,且b1=1.求证:对于?n∈N*,1≤bn
2
恒成立;
(3)对于θ∈(0,
π
2
)
,设{an}的前n项和为Sn,试比较Sn+2与
4
sin2
的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}(n∈N*)是等比数列,且an>0,a1=2,a3=8,
(1)求数列{an}的通项公式;
(2)求证:
1
a1
+
1
a2
+
1
a3
+…+
1
an
<1

(3)设bn=2log2an+1,求数列{bn}的前100项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•松江区二模)已知数列{an}(n∈N*)的前n项和为Sn,数列{
Sn
n
}
是首项为0,公差为
1
2
的等差数列.
(1)求数列{an}的通项公式;
(2)设bn=
4
15
•(-2)an(n∈N*)
,对任意的正整数k,将集合{b2k-1,b2k,b2k+1}中的三个元素排成一个递增的等差数列,其公差为dk,求dk
(3)对(2)题中的dk,设A(1,5d1),B(2,5d2),动点M,N满足
MN
=
AB
,点N的轨迹是函数y=g(x)的图象,其中g(x)是以3为周期的周期函数,且当x∈(0,3]时,g(x)=lgx,动点M的轨迹是函数f(x)的图象,求f(x).

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•松江区二模)已知数列{an}(n∈N*)的前n项和为Sn,数列{
Sn
n
}
是首项为0,公差为
1
2
的等差数列.
(1)求数列{an}的通项公式;
(2)设bn=
4
15
•(-2)an(n∈N*)
,对任意的正整数k,将集合{b2k-1,b2k,b2k+1}中的三个元素排成一个递增的等差数列,其公差为dk,求证:数列{dk}为等比数列;
(3)对(2)题中的dk,求集合{x|dk<x<dk+1,x∈Z}的元素个数.

查看答案和解析>>

同步练习册答案