精英家教网 > 高中数学 > 题目详情

【题目】选修4-5:不等式选讲
设a,b为互不相等的正实数,求证:4(a3+b3)>(a+b)3

【答案】证明:因为a>0,b>0,所以要证4(a3+b3)>(a+b)3 , 只要证4(a+b)(a2﹣ab+b2)>(a+b)3
即要证4(a2﹣ab+b2)>(a+b)2
只需证3(a﹣b)2>0,
而a≠b,故3(a﹣b)2>0成立.
∴4(a3+b3)>(a+b)3
【解析】利用分析法,从结论入手,寻找结论成立的条件,即可得到证明.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】“|x+1|+|x﹣2|≤5”是“﹣2≤x≤3”的(
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=x5+ax3+bx+1且f(﹣2)=10,那么f(2)=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知奇函数f(x)是定义在(﹣1,1)上的减函数,且f(1﹣t)+f(1﹣t2)<0,则 t的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=3|x1|的单调递增区间

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=lg(x﹣1)的定义域是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=x2+3ax+4,b﹣3≤x≤2b是偶函数,则a﹣b的值是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知集合A={1,2,3,4},B={y|y=x+1,x∈A},则A∩B=

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】把89化为五进制数的首位数字是(
A.1
B.2
C.3
D.4

查看答案和解析>>

同步练习册答案