| A. | $-\frac{{\sqrt{10}}}{5}$ | B. | $\frac{{\sqrt{10}}}{5}$ | C. | $-\frac{{\sqrt{10}}}{10}$ | D. | $\frac{{\sqrt{10}}}{10}$ |
分析 已知等式利用两角和与差的正切函数公式及特殊角的三角函数值化简,求出tanθ的值,再根据θ为第二象限角,利用同角三角函数间的基本关系求出sinθ与cosθ的值,即可求出sinθ+cosθ的值.
解答 解:∵tan(θ+$\frac{π}{4}$)=$\frac{tanθ+1}{1-tanθ}$=$\frac{1}{2}$,
∴tanθ=-$\frac{1}{3}$,
而cos2θ=$\frac{co{s}^{2}θ}{si{n}^{2}θ+co{s}^{2}θ}$=$\frac{1}{1+ta{n}^{2}θ}$,
∵θ为第二象限角,
∴cosθ=-$\sqrt{\frac{1}{1+ta{n}^{2}θ}}$=-$\frac{3\sqrt{10}}{10}$,sinθ=$\sqrt{1-co{s}^{2}θ}$=$\frac{\sqrt{10}}{10}$,
则sinθ+cosθ=$\frac{\sqrt{10}}{10}$-$\frac{3\sqrt{10}}{10}$=-$\frac{\sqrt{10}}{5}$.
故选:A.
点评 此题考查了两角和与差的正切函数公式,以及同角三角函数间的基本关系,熟练掌握公式是解本题的关键.
科目:高中数学 来源: 题型:选择题
| A. | $2\sqrt{2}$ | B. | $\sqrt{10}$ | C. | 8 | D. | 10 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{x^2}{6}+\frac{y^2}{4}=1$ | B. | $\frac{x^2}{8}+\frac{y^2}{4}=1$ | C. | $\frac{y^2}{4}+\frac{x^2}{2}=1$ | D. | $\frac{x^2}{4}+\frac{y^2}{2}=1$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| x | 2 | 4 | 5 | 6 | 8 |
| y | 30 | 40 | 60 | 50 | 70 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | $\frac{7}{8}$ | C. | $\frac{9}{8}$ | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $-\frac{{\sqrt{3}}}{3}$ | B. | $\frac{{\sqrt{3}}}{3}$ | C. | $-\frac{{\sqrt{3}}}{2}$ | D. | $\frac{{\sqrt{3}}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{a+b}{b}$=$\frac{c+d}{c}$ | B. | $\frac{a+c}{c}$=$\frac{b+d}{d}$ | C. | $\frac{a-c}{c}$=$\frac{b-d}{b}$ | D. | $\frac{a-c}{a}$=$\frac{b-d}{d}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com