精英家教网 > 高中数学 > 题目详情

【题目】ab都是非零向量,且ab不共线.

(1求证:A,B,D三点共线;

(2) 若kaba+kb共线,求实数k的值.

【答案】(1)见解析(2)k=±1

【解析】试题分析:(1)先根据题意计算,再根据坐标判定与平行,由于有公共点,所以三点共线(2)根据向量共线条件可得关于k的关系式,解对应方程可得实数k的值.

试题解析:(1) 证明:∵ab2a8b3(ab),

2a8b3(ab)=5(ab)=5,∴共线.

又它们有公共点B,∴ A,B,D三点共线.

(2) 解:∵ kaba+kb共线,

∴ 存在实数λ,使kab=λ(a+kb),

即(k-λ)a=(λk-1)b.

ab是两个不共线的非零向量,

∴ k-λ=λk-1=0,∴ k2-1=0.

∴ k=±1.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求函数的单调区间;

(2)证明当时,关于的不等式恒成立;

(3)若正实数满足,证明.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正方体ABCD-A1B1C1D1,EF分别是BB1CD的中点.

()证明:ADD1F;

()AED1F所成的角;

()证明:面AEDA1FD1.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)若曲线处的切线的方程为,求实数的值;

(2)设,若对任意两个不等的正数,都有恒成立,求实数的取值范围;

(3)若在上存在一点,使得成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的两个焦点分别为,短轴的两个端点分别为

1)若为等边三角形,求椭圆的方程;

2)若椭圆的短轴长为2,过点的直线与椭圆相交于两点,且,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中,平面平面为等边三角形,

分别为的中点.

(I)求证:平面

(II)求证:平面平面

(III)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中,平面平面为等边三角形,

分别为的中点.

(I)求证:平面

(II)求证:平面平面

(III)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,当时,的图象在处的切线相同.

(1)求的值;

(2)令,若存在零点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)谈论函数的单调性;

(Ⅱ)若函数在区间内任取有两个不相等的实数,不等式恒成立,求的取值范围.

查看答案和解析>>

同步练习册答案