精英家教网 > 高中数学 > 题目详情
(2012•江西模拟)设M是由满足下列条件的函数f(x)构成的集合:①方程f(x)-x=0有实根;②函数f(x)的导数f′(x)满足0<f′(x)<1.
(1)若函数f(x)为集合M中的任意一个元素,证明:方程f(x)-x=0只有一个实根;
(2)判断函数g(x)=
x
2
-
lnx
2
+3(x>1)
是否是集合M中的元素,并说明理由;
(3)设函数f(x)为集合M中的任意一个元素,对于定义域中任意α,β,证明|f(α)-f(β)|≤|α-β|
分析:(1)构造函数h(x)=f(x)-x,由已知可判断h(x)是单调递减函数,由单调函数至多有一个零点,及方程f(x)-x=0有实根,可证得答案;
(2)结合函数g(x)=
x
2
-
lnx
2
+3(x>1)
,分析条件:①方程g(x)-x=0有实根;②函数g(x)的导数g′(x)满足0<g′(x)<1.两个条件是否满足,可得结论;
(3)不妨设α≤β,由(1)证得函数的单调性,易证明0≤f(β)-f(α)≤β-α,进而根据绝对值的定义得到结论.
解答:证明::(1)令h(x)=f(x)-x,则h′(x)=f′(x)-1<0,故h(x)是单调递减函数,
所以,方程h(x)=0,即f(x)-x=0至多有一解,
又由题设①知方程f(x)-x=0有实数根,
所以,方程f(x)-x=0有且只有一个实数根…..(4分)
(2)易知,g′(x)=
1
2
-
1
2x
,则0<g′(x)<1,满足条件②;
令F(x)=g(x)-x=-
x
2
-
lnx
2
+3(x>1)

则F(e)=-
e
2
-
lne
2
+3
=-
e
2
+
5
2
>0,F(e2)=-
e2
2
+1
<0,…..(7分)
又F(x)在区间[e,e2]上连续,所以F(x)在[e,e2]上存在零点x0
即方程g(x)-x有实数根x0∈[e,e2],故g(x)满足条件①,
综上可知,g(x)∈M…(9分)
(Ⅲ)不妨设α≤β,∵f′(x)>0,∴f(x)单调递增,
∴f(α)≤f(β),即f(β)-f(α)≥0,,
令h(x)=f(x)-x,则h′(x)=f′(x)-1<0,故h(x)是单调递减函数,
∴f(β)-β≤f(α)-α,即f(β)-f(α)≤β-α,
∴0≤f(β)-f(α)≤β-α,
则有|f(α)-f(β)|≤|α-β|.…..….(13分)
点评:本题是函数与方程的综合应用,是函数零点与方程根关系的综合应用,其中利用导数法分析函数的单调性,进而判断函数零点的个数及对应方程根的个数难度较大.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•江西模拟)球O的球面上有四点S,A,B,C,其中O,A,B,C四点共面,△ABC是边长为2的正三角形,面SAB⊥面ABC,则棱锥S-ABC的体积的最大值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•江西模拟)在△ABC中,P是BC边中点,角A、B、C的对边分别是a、b、c,若c
AC
+a
PA
+b
PB
=
0
,则△ABC的形状为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•江西模拟)已知数列{an}是各项均不为0的等差数列,公差为d,Sn 为其前n项和,且满足an2=S2n-1,n∈N*.数列{bn}满足bn=
1anan+1
,Tn为数列{bn}的前n项和.
(1)求数列{an}的通项公式和Tn
(2)是否存在正整数m,n(1<m<n),使得T1,Tm,Tn,成等比数列?若存在,求出所有m,n的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•江西模拟)已知函数f(x)=
3
2
sin2x-
1
2
(cos2x-sin2x)-1
,x∈R,将函数f(x)向左平移
π
6
个单位后得函数g(x),设△ABC三个角A、B、C的对边分别为a、b、c.
(Ⅰ)若c=
7
,f(C)=0,sinB=3sinA,求a、b的值;
(Ⅱ)若g(B)=0且
m
=(cosA,cosB)
n
=(1,sinA-cosAtanB)
,求
m
n
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•江西模拟)过双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)
的右顶点A作斜率为-1的直线,该直线与双曲线的两条渐进线的交点分别为B、C.若
AB
=
1
2
BC
,则双曲线的离心率是
5
5

查看答案和解析>>

同步练习册答案