精英家教网 > 高中数学 > 题目详情

已知椭圆C:x2+数学公式=1,过点M(0,1)的直线l与椭圆C相交于两点A、B.
(Ⅰ)若l与x轴相交于点P,且P为AM的中点,求直线l的方程;
(Ⅱ)设点N(0,数学公式),求|数学公式|的最大值.

(Ⅰ)解:设A(x1,y1),
因为P为AM的中点,且P的纵坐标为0,M的纵坐标为1,
所以,解得y1=-1,(1分)
又因为点A(x1,y1)在椭圆C上,
所以,即,解得
则点A的坐标为()或(-),
所以直线l的方程为,或
(Ⅱ)解:设A(x1,y1),B(x2,y2),

所以

当直线AB的斜率不存在时,
其方程为x=0,A(0,2),B(0,-2),此时
当直线AB的斜率存在时,设其方程为y=kx+1,
由题设可得A、B的坐标是方程组的解,
消去y得(4+k2)x2+2kx-3=0,
所以△=(2k)2+12(4+k2)>0,

所以
=
当k=0时,等号成立,即此时取得最大值1.
综上,当直线AB的方程为x=0或y=1时,有最大值1.
分析:(Ⅰ)设A(x1,y1),因为P为AM的中点,且P的纵坐标为0,M的纵坐标为1,所以y1=-1,又因为点A(x1,y1)在椭圆C上,所以,由此能求出直线l的方程.
(Ⅱ)设A(x1,y1),B(x2,y2),则,所以,则,由此进行分类讨论,能推导出当直线AB的方程为x=0或y=1时,有最大值1.
点评:本题主要考查椭圆标准方程,简单几何性质,直线与椭圆的位置关系.考查运算求解能力,推理论证能力;考查化归与转化思想.解题时要认真审题,仔细解答,注意分类讨论思想的灵活运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知椭圆C:
x
2
 
a
2
 
+
y
2
 
b
2
 
=1(a>b>0)

(1)若椭圆的长轴长为4,离心率为
3
2
,求椭圆的标准方程;
(2)在(1)的条件下,设过定点M(0,2)的直线l与椭圆C交于不同的两点A、B,且∠AOB为锐角(其中O为坐标原点),求直线l的斜率k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,已知椭圆C:x2+
y2
a2
=1(a>1)的离心率为e,点F为其下焦点,点A为其上顶点,过F的直线l:y=mx-c(其中c=
a2-1
与椭圆C相交于P,Q两点,且满足
AP
AQ
=
a2(a+c)2-1
2-c2

(1)试用a表示m2
(2)求e的最大值;
(3)若e∈(
1
3
1
2
),求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•枣庄二模)已知椭圆C:
x
2
 
a
2
 
+
y
2
 
b
2
 
=1(a>b>0)
的左顶点为A,右焦点为F,且过点(1,
3
2
),椭圆C的焦点与曲线2
x
2
 
-2
y
2
 
=1
的焦点重合.
(1)求椭圆C的方程;
(2)过点F任作椭圆C的一条弦PQ,直线AP、AQ分别交直线x=4于M、N两点,点M、N的纵坐标分别为m、n.请问以线段MN为直径的圆是否经过x轴上的定点?若存在,求出定点的坐标,并证明你的结论;若不存在,请说明理由.
(3)在(2)问的条件下,求以线段MN为直径的圆的面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•枣庄二模)已知椭圆C:
x
2
 
a
2
 
+
y
2
 
b
2
 
=1(a>b>0)
的左顶点为A,右焦点为F,且过点(1,
3
2
),椭圆C的焦点与曲线2
x
2
 
-2
y
2
 
=1
的焦点重合.
(1)求椭圆C的方程;
(2)过点F任作椭圆C的一条弦PQ,直线AP、AQ分别交直线x=4于M、N两点,点M、N的纵坐标分别为m、n.请问以线段MN为直径的圆是否经过x轴上的定点?若存在,求出定意的坐标,并证明你的结论;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x
2
 
a
2
 
+
y
2
 
b
2
 
=1(a>b>0)
,F1、F2分别为椭圆c的左右焦点,点P在椭圆C上(不是顶点),△PF1F2内一点G满足3
PG
=
PF1
+
PF2
,其中
OG
=(
1
9
a,
6
9
a)

(I)求椭圆C的离心率;
(Ⅱ)若椭圆C短轴长为2
3
,过焦点F2的直线l与椭圆C相交于A、B两点(A、B不是左右顶点),若
AF2
=2
F2B
,求△F1AB面积.

查看答案和解析>>

同步练习册答案