精英家教网 > 高中数学 > 题目详情
a=(4,-2,-4),b=(6,-3,2),则(2a-3b)(a+2b)等于(    )

A.-200              B.120             C.200               D.-230

A

解析:2a-3b=(8,-4,-8)-(18,-9,6)=(-10,5,-14),a+2b=(4,-2,-4)+(12,-6,4)=(16,-8,0),

∴(2a-3b)(a+2b)=-10×16+5×(-8)+(-14)×0=-200.


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

因发生意外交通事故,一辆货车上的某种液体泄漏到一渔塘中.为了治污,根据环保部门的建议,现决定在渔塘中投放一种可与污染液体发生化学反应的药剂.已知每投放a(1≤a≤4,且a∈R)个单位的药剂,它在水中释放的浓度y(克/升)随着时间x(天)变化的函数关系式近似为y=a•f(x),其中f(x)=
16
8-x
-1,(0≤x≤4)
5-
1
2
x,(4<x≤10)

若多次投放,则某一时刻水中的药剂浓度为每次投放的药剂在相应时刻所释放的浓度之和.根据经验,
当水中药剂的浓度不低于4(克/升)时,它才能起到有效治污的作用.
(Ⅰ)若一次投放4个单位的药剂,则有效治污时间可达几天?
(Ⅱ)若第一次投放2个单位的药剂,6天后再投放a个单位的药剂,要使接下来的4天中能够持续有效治污,试求a的最小值(精确到0.1,参考数据:
2
取1.4).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A(4,-2),F为抛物线y2=8x的焦点,点M在抛物线上移动,当|MA|+|MF|取最小值时,M点的坐标为(    )

A.(0,0)                B.(1,-2)              C.(2,-2)                D.(,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量a=(4,-2,-4),b=(6,-3,2).

求:(1)a·b

(2)|a|;

(3)|b|;

(4)(2a+3b)·(a-2b).

查看答案和解析>>

科目:高中数学 来源:2011-2012学年福建省漳州市高三(下)3月质量检查数学试卷(理科)(解析版) 题型:解答题

本题(1)、(2)、(3)三个选答题,每小题7分,请考生任选2题作答,满分14分,如果多做,则按所做的前两题计分.作答时,先用2B铅笔在答题卡上把所选题目对应的题号涂黑,并将所选题号填入括号中.
(1)选修4-2:矩阵与变换
已知矩阵A=有一个属于特征值1的特征向量
(Ⅰ) 求矩阵A;
(Ⅱ) 矩阵B=,点O(0,0),M(2,-1),N(0,2),求△OMN在矩阵AB的对应变换作用下所得到的△O'M'N'的面积.
(2)选修4-4:坐标系与参数方程
已知直角坐标系xOy中,直线l的参数方程为(t为参数).以直角坐标系xOy中的原点O为 极点,x轴的非负半轴为极轴,圆C的极坐标方程为ρ2-4ρcosθ+3=0,
(Ⅰ) 求l的普通方程及C的直角坐标方程;
(Ⅱ) P为圆C上的点,求P到l距离的取值范围.
(3)选修4-5:不等式选讲
已知关于x的不等式:|x-1|+|x+2|≥a2+2|a|-5对任意x∈R恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案