精英家教网 > 高中数学 > 题目详情
精英家教网如图,AB是⊙O的直径,∠BAC=60°,P是OB上一点,过P作AB的垂线与AC的延长线交于点Q,过点C的切线CD交PQ于D,连接OC.
(1)求证:△CDQ是等腰三角形;
(2)如果△CDQ≌△COB,求BP:PO的值.
分析:(1)在Rt△ABC中,∠BAC=60°,所以∠ABC=30°,而OB=OC,则有∠OCB=30°,再结合CD时切线,可求∠BCD=60°,那么∠DCQ可求,即可得出△CDQ是等腰三角形;
(2)可以假设AB=2,则OB=OA=OC=1,利用勾股定理可得BC=
3
;由于△CDQ≌△COB,那么有CB=CQ,即可求出AQ的长;在直角三角形APQ中,利用30°所对的边等于斜边的一半,又可求AP,而OP=AP-OA,即可求OP,BP也就可求,从而得出BP:PO的值.
解答:解:(1)由已知得∠ACB=90°,∠ABC=30°,
∴∠Q=30°,∠BCO=∠ABC=30°;
∵CD是⊙O的切线,CO是半径,
∴CD⊥CO,
∴∠DCQ=∠BCO=30°,
∴∠DCQ=∠Q,
故△CDQ是等腰三角形.
(2)设⊙O的半径为1,则AB=2,OC=1,BC=
3

∵等腰三角形CDQ与等腰三角形COB全等,
∴CQ=BC=
3

∴AQ=AC+CQ=1+
3

∴AP=
1
2
AQ=
1+
3
2

∴BP=AB-AP=
3-
3
2

∴PO=AP-AO=
3
-1
2

∴BP:PO=
3
点评:本题主要考查了圆的切线的性质定理,属于基础题,此题综合考查了等腰三角形的判定和圆周角的性质.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(理科)如图的多面体是底面为平行四边形的直四棱柱ABCD-A1B1C1D1,经平面AEFG所截后得到的图形.其中∠BAE=∠GAD=45°,AB=2AD=2,∠BAD=60°.
精英家教网
(Ⅰ)求证:BD⊥平面ADG;
(Ⅱ)求平面AEFG与平面ABCD所成锐二面角的余弦值.

(文科)如图,AB为圆O的直径,点E、F在圆O上,AB∥EF,矩形ABCD所在的平面和圆O所在的平面互相垂直,且AB=2,AD=EF=1.
(Ⅰ)求证:AF⊥平面CBF;
(Ⅱ)设FC的中点为M,求证:OM∥平面DAF.
精英家教网

查看答案和解析>>

科目:高中数学 来源:南充高中2008-2009学年高二下学期第四次月考数学试题(理) 题型:044

如图,已知PA垂直于⊙O所在平面,AB是⊙O的直径,点C为圆周上异于AB的一点.

(1)若一个n面体中有m个面是直角三角形,则称这个n面体的直度为.那么四面体P-ABC的直度为多少?说明理由;

(2)在四面体P-ABC中,AP=AB=1,设.若动点M在四面体P-ABC表面上运动,并且总保持PB⊥AM.设为动点M的轨迹围成的封闭图形的面积关于角的函数,求取最大值时,二面角A-PB-C的正切值.

查看答案和解析>>

科目:高中数学 来源:四川省南充高中2008-2009学年高二下学期第四次月考数学文 题型:044

如图,已知PA垂直于⊙O所在平面,AB是⊙O的直径,点C为圆周上异于AB的一点.

(1)若一个n面体中有m个面是直角三角形,则称这个n面体的直度为.那么四面体P-ABC的直度为多少?说明理由;

(2)如图,若四面体P-ABC中,AP=AB=1,AE⊥PB,垂足为E,AF⊥PC,垂足为F.设∠EAF=为△AEF面积的函数,求取最大值时二面角A-PB-C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,ABCD是正方形,EF分别是ADBC边上的点,EFABEFAC于点O,以EF为棱把它折成直二面角A-EF-D后,求证:不论EF怎样移动,∠AOC是定值.

查看答案和解析>>

科目:高中数学 来源:四川省南充高中08-09学年高二下学期第四次月考(理) 题型:解答题

 如图甲,已知PA垂直于⊙O所在平面,AB是⊙O的直径,点C为圆周上异于AB的一点.

(1)若一个面体中有个面是直角三角形,则称这个面体的直度为.那么四面体的直度为多少?说明理由;

(2)在四面体中,,设.若动点在四面体 表面上运动,并且总保持.设为动点的轨迹围成的封闭图形的面积关于角的函数,求取最大值时,二面角的正切值.

 

 

 

 

 

 

 

 

查看答案和解析>>

同步练习册答案