【题目】设椭圆C: (a>2 )的右焦点为F,右顶点为A,上顶点为B,且满足 ,其中O 为坐标原点,e为椭圆的离心率.
(1)求椭圆C的方程;
(2)设点P是椭圆C上一点,直线PA与y轴交于点M,直线PB与x轴交于点N,求证:|AN||BM|为定值.
【答案】
(1)解:设F(c,0),由 ,得: ,故a2﹣c2=b2=8c2,
∴c2=1,a2=9
故椭圆C的方程为:
(2)证明:由(1)知: ,设P(x0,y0),则
当x0=0时, ,
故:
当x0≠0时,直线PA的方程为: ,令x=0,得: ,
故: ,
直线PB的方程为: ,令y=0,得: ,
故: .
所以
=
综上可知: ,即|AN||BM|为定值
【解析】(1)由 ,可知 ,整理得:a2﹣c2=b2=8c2 , 即可求得a和c的值,求得椭圆方程;(2)由(1)可知,求得A和B点坐标,当x0=0时,求得M和N点坐标,求得|AN|和BM|,即可求得 ,当x0≠0时,求得直线PA和PB的直线方程,求得点M和N的坐标,求得|AN|和BM|,即可求得|AN||BM|为定值.
科目:高中数学 来源: 题型:
【题目】某地合作农场的果园进入盛果期,果农利用互联网电商渠道销售苹果,苹果单果直径不同则单价不同,为了更好的销售,现从该合作农场果园的苹果树上随机摘下了50个苹果测量其直径,经统计,其单果直径分布在区间内(单位:),统计的茎叶图如图所示:
(Ⅰ)按分层抽样的方法从单果直径落在,的苹果中随机抽取6个,则从,的苹果中各抽取几个?
(Ⅱ)从(Ⅰ)中选出的6个苹果中随机抽取2个,求这两个苹果单果直径均在内的概率;
(Ⅲ)以此茎叶图中单果直径出现的频率代表概率,若该合作农场的果园有20万个苹果约5万千克待出售,某电商提出两种收购方案:方案:所有苹果均以5.5元/千克收购;方案:按苹果单果直径大小分3类装箱收购,每箱装25个苹果,定价收购方式为:单果直径在内按35元/箱收购,在内按45元/箱收购,在内按55元/箱收购.包装箱与分拣装箱费用为5元/箱(该费用由合作农场承担).请你通过计算为该合作农场推荐收益最好的方案.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥P﹣ABCD的底面是正方形,PD⊥底面ABCD,点E在棱PB上.
(1)求证:平面AEC⊥平面PDB;
(2)当PD=2AB,且E为PB的中点,求二面角B﹣AE﹣C的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,△ABC的角平分线AD的延长线交它的外接圆于点E.
(1)证明:△ABE∽△ADC;
(2)若△ABC的面积S= ADAE,求∠BAC的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,将的图象向右平移两个单位长度,得到函数的图象.
(1)求函数的解析式;
(2)若方程在上有且仅有一个实根,求的取值范围;
(3)若函数与的图象关于直线对称,设,已知对任意的恒成立,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列命题中正确命题的个数是()
①若直线与直线平行,则直线平行于经过直线的所有平面;②平行于同一个平面的两条直线互相平行;③若是两条直线,是两个平面,且,,则是异面直线;④若直线恒过定点(1,0),则直线方程可设为.
A.0B.1C.2D.3
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com