精英家教网 > 高中数学 > 题目详情
如图所示,四棱锥P-ABCD的底面为直角梯形,∠ADC=∠DCB=90°,AD=1,BC=3,PC=CD=2,PC⊥底面ABCD,E为AB的中点.
(1)求证:平面PDE⊥平面PAC;
(2)求直线PC与平面PDE所成角的正弦值;
(3)求点B到平面PDE的距离.

【答案】分析:分析:(I)由题意,利用三角形相似及角的互余得到线线垂直,再利用线面垂直的判定定理求出线面垂直,进而利用面面垂直的判定定理证出面面垂直;
(II连接PG,过点C作CH⊥PG于H点,利用面面垂直及三垂线定理求出直线PC与平面PDE所成角,然后再三角形中解出直线PC与平面PDE所成角的大小;
(III)利用线面垂直的性质及直角三角形求出点到面的距离.
解答:解:(Ⅰ)设AC与DE交点为G,延长DE交CB的延长线于点F,
则△DAE≌△FBE,∴BF=AD=1,∴CF=4,∴
又∵,∴∠F=∠ACD,
又∵∠ACD+∠ACF=90°,∴∠F+∠ACF=90°,
∴∠CGF=90°,∴AC⊥DE
又∵PC⊥底面ABCD,∴PC⊥DE,∴DE⊥平面PAC,
∵DE?平面PDE,∴平面PDE⊥平面PAC
(Ⅱ)连接PG,过点C作CH⊥PG于H点,
又由(Ⅰ)知平面PDE⊥平面PAC,且PG是交线,
根据面面垂直的性质,得CH⊥平面PDE,
∴∠CPG即为直线PC与平面PDE所成角
在Rt△DCA中,CG==
在Rt△PCG中,tan∠CPG==
∴sinα=,即直线PC与平面PDE所成角
的正弦值为
(Ⅲ)由于 ,所以可知点B到平面PDE的距离等于点C到平面PDE的距离的 ,即 .在Rt△PCG中,
从而点B到平面PDE的距离等于
点评:点评:此题重点考查了三角形相似,线线垂直,线面垂直的判定及性质,面面垂直的判定及性质,还考查了利用三垂线定理求出二面角,点到平面的距离定义及利用反三角函数表示角的大小,
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图所示,四棱锥P-ABCD的底面为直角梯形,∠ADC=∠DCB=90°,AD=1,BC=3,PC=CD=2,PC⊥底面ABCD,E为AB的中点.
(Ⅰ)求证:平面PDE⊥平面PAC;
(Ⅱ)求二面角C-PD-E的大小;
(Ⅲ)求点B到平面PDE的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图所示,四棱锥P-ABCD的底面是一个矩形,AB=3.AD=1.又PA⊥AB,PA=4,
∠PAD=60°.求:
(1)四棱锥P-ABCD的体积.
(2)二面角P-BC-D的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图所示,四棱锥P-ABCD的底面ABCD是半径为R的圆的内接四边形,其中BD是圆的直径,∠ABD=60°,∠BDC=45°,△ADP~△BAD.
(1)求线段PD的长;
(2)若PC=
11
R
,求三棱锥P-ABC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•烟台一模)如图所示,四棱锥P-ABCD中,ABCD为正方形,PA⊥AD,E,F,G分别是线段PA,PD,CD的中点.
求证:
(1)BC∥平面EFG;
(2)平面EFG⊥平面PAB.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示,四棱锥P-ABCD底面是直角梯形,BA⊥AD,CD⊥AD,CD=2AB,PA⊥底面ABCD,E为PC的中点,PA=AD=AB=1.
(1)证明:EB∥平面PAD;
(2)证明:BE⊥平面PDC;
(3)求三棱锥B-PDC的体积V.

查看答案和解析>>

同步练习册答案