精英家教网 > 高中数学 > 题目详情
15.已知函数f(x)=|x+1|+2|x-1|-a.
(Ⅰ)若a=1,求不等式f(x)>x+2的解集;
(Ⅱ)若不等式f(x)≤a(x+2)的解集为非空集合,求a的取值范围.

分析 (Ⅰ)把要解的不等式等价转化为与之等价的三个不等式组,求出每个不等式组的解集,再取并集,即得所求.
(Ⅱ)由题意可得|x+1|+2|x-1|≤a(x+3)能成立.设g(x)=|x+1|+2|x-1|,由题意可得f(x)的图象有一部分位于直线线y=a(x+3)的下方.求得PA、BC的斜率,数形结合求得a的范围.

解答 解:(Ⅰ)当a=1时,f(x)=|x+1|+2|x-1|-1,
不等式f(x)>x+2,即|x+1|+2|x-1|>x+3.
∴$\left\{\begin{array}{l}{x<-1}\\{1-3x>x+3}\end{array}\right.$①或 $\left\{\begin{array}{l}{-1≤x<1}\\{3-x>x+3}\end{array}\right.$②或 $\left\{\begin{array}{l}{x≥1}\\{3x-1>x+3}\end{array}\right.$③.
解①求得x<-1,解②求得-1≤x<0,解③求得x>2,
综上可得,原不等式的解集为{x|x<0,或x>2}.
(Ⅱ)由题意可得f(x)≤a(x+2)有解,化简f(x)≤a(x+2)可得|x+1|+2|x-1|≤a(x+3).
设g(x)=|x+1|+2|x-1|=$\left\{\begin{array}{l}{1-3x,x<-1}\\{3-x,-1≤x<1}\\{3x-1,x≥1}\end{array}\right.$,
由于直线y=a(x+3)经过定点P(-3,0),如图:

由题意可得f(x)的图象有一部分位于直线线y=a(x+3)的下方.
由于PA的斜率KPA=$\frac{2-0}{1+3}$=$\frac{1}{2}$,直线BC的斜率 KBC=-3,
故a的范围为(-∞,-3)∪($\frac{1}{2}$,+∞).

点评 本题主要考查绝对值不等式的解法,函数的能成立问题,体现了转化、分类讨论、数形结合的数学思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.已知x、y满足约束条件$\left\{\begin{array}{l}{x-y≥1}\\{2x-y+1≤0}\end{array}\right.$,且目标函数z=mx-ny(m>0,n<0)的最大值为-6,则$\frac{n}{m-1}$的取值范围是(  )
A.[-2,0]∪[$\frac{1}{2}$,+∞)B.[2,+∞)C.(-∞,0)∪(2,+∞)D.(-∞,0)∪[$\frac{1}{2}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=2$\sqrt{3}$,$\overrightarrow{a}$与$\overrightarrow{b}$的夹角的余弦值为sin$\frac{17π}{3}$,则$\overrightarrow{b}$•(2$\overrightarrow{a}$-$\overrightarrow{b}$)等于(  )
A.2B.-1C.-6D.-18

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知函数f(x)=$\left\{\begin{array}{l}{x^2}+2x({x≥0})\\ g(x)({x<0})\end{array}$为奇函数,则g(-1)=-3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若直线$\frac{x}{a}$+$\frac{y}{b}$=1通过点M(cosα,sinα),则(  )
A.a2+b2≤1B.a2+b2≥1C.$\frac{1}{{a}^{2}}$+$\frac{1}{{b}^{2}}$≤1D.$\frac{1}{{a}^{2}}$+$\frac{1}{{b}^{2}}$≥1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在△ABC中,点D在BC边上,AD平分∠BAC,AB=6,AD=3$\sqrt{2}$,AC=4.
(1)利用正弦定理证明:$\frac{AB}{AC}=\frac{BD}{DC}$;
(2)求BC的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.命题p:“若a≥b,则a+b>2012且a>-b”的逆否命题是(  )
A.若a+b≤2 012且a≤-b,则a<bB.若a+b≤2 012且a≤-b,则a>b
C.若a+b≤2 012或a≤-b,则a<bD.若a+b≤2 012或a≤-b,则a>b

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.在平面直角坐标系xOy中,已知曲线C1:$\left\{\begin{array}{l}x=cosθ\\ y=sinθ\end{array}\right.(θ为参数)$,以平面直角坐标系xOy的原点O为极点,x轴的正半轴为极轴,取相同的单位长度建立极坐标系,已知直线l:ρ(2cosθ-sinθ)=6.
(1)将曲线C1上的所有点的横坐标、纵坐标分别伸长为原来的$\sqrt{3}$、2倍后得到曲线C2;试写出直线l的直角坐标方程和曲线C2的参数方程;
(2)在曲线C2上求一点P,使点P到直线l的距离最大,并求出此最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知两个函数f(x)=log4(a$•{2}^{x}-\frac{4}{3}a$)(a≠0),g(x)=log4(4x+1)-$\frac{1}{2}x$的图象有且只有一个公共点,则实数a的取值范围是{a|a>1或a=-3}..

查看答案和解析>>

同步练习册答案