精英家教网 > 高中数学 > 题目详情

【题目】为数列的前项和,对任意的,都有为常数,且

1)求证:数列是等比数列;

2)设数列的公比,数列满足),求数列的通项公式;

3)在满足(2)的条件下,求证:数列的前项和

【答案】1)证明过程见详解;(2);(3)证明过程见详解.

【解析】

1)先由题意求出;再由,即可证明数列是等比数列;

2)由(1)的结果得到,

再由,得到进而可求出结果;

3)先由(2)知,则,根据放缩法,与裂项相消,即可证明结论成立.

1)证明:当时,,解得

时,

为常数,且,∴

∴数列是首项为1,公比为的等比数列.

2)解:由(1)得,

,即

是首项为,公差为1的等差数列.

,即).

3)证明:由(2)知,则,

所以

时,

所以

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】经过多年的努力,炎陵黄桃在国内乃至国际上逐渐打开了销路,成为炎陵部分农民脱贫致富的好产品.为了更好地销售,现从某村的黄桃树上随机摘下了100个黄桃进行测重,其质量分布在区间内(单位:克),统计质量的数据作出其频率分布直方图如图所示:

(1)按分层抽样的方法从质量落在的黄桃中随机抽取5个,再从这5个黄桃中随机抽2个,求这2个黄桃质量至少有一个不小于400克的概率;

(2)以各组数据的中间数值代表这组数据的平均水平,以频率代表概率,已知该村的黄桃树上大约还有100000个黄桃待出售,某电商提出两种收购方案:

A.所有黄桃均以20/千克收购;

B.低于350克的黄桃以5/个收购,高于或等于350克的以9/个收购.

请你通过计算为该村选择收益最好的方案.

参考数据:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知正实数xy满足等式

(Ⅰ)试将y表示为x的函数,并求出定义域和值域;

(Ⅱ)是否存在实数m,使得函数有零点?若存在,求出m的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】临川一中实验学校坐落在抚州火车站附近,在校区东边(如图),有一直径为8米的半圆形空地,现计划移植一古树,但需要有辅助光照.半圆周上的处恰有一可旋转光源满足古树生长的需要,该光源照射范围是,点在直径上,且.

1)若,求的长;

2)设,求该空地种植古树的最大面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某地区某农产品近几年的产量统计如表:

年份

2012

2013

2014

2015

2016

2017

年份代码t

1

2

3

4

5

6

年产量y(万吨)

6.6

6.7

7

7.1

7.2

7.4

Ⅰ)根据表中数据,建立关于的线性回归方程

(Ⅱ)根据线性回归方程预测2019年该地区该农产品的年产量.

附:对于一组数据,其回归直线的斜率和截距的最小二乘估计分别为:.(参考数据:,计算结果保留小数点后两位)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司为了变废为宝,节约资源,新上了一个从生活垃圾中提炼生物柴油的项目.经测算该项目月处理成本(元)与月处理量(吨)之间的函数关系可以近似地表示为:,且每处理一吨生活垃圾,可得到能利用的生物柴油价值为元,若该项目不获利,政府将给予补贴.

1)当时,判断该项目能否获利?如果获利,求出最大利润;如果不获利,则政府每月至少需要补贴多少元才能使该项目不亏损?

2)该项目每月处理量为多少吨时,才能使每吨的平均处理成本最低?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在正四棱柱中,底面边长为,侧棱长为.

1)求证:平面平面

2)求直线与平面所成的角的正弦值;

3)设为截面-点(不包括边界),求到面,面,面的距离平方和的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)log4(4x1)kx(k∈R)是偶函数.

(1)k的值;

(2)g(x)log4,若函数f(x)g(x)的图象有且只有一个公共点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对照数据.

x

3

4

5

6

y

2.5

3

4

4.5

1)请画出表中数据的散点图;

2)请根据表中提供的数据,用最小二乘法求出y关于x的线性回归方程

3)根据(2)求出的线性回归方程,预测生产100吨甲产品的生产能耗多少吨标准煤?

(附:

查看答案和解析>>

同步练习册答案