【题目】已知
中,边
,
,令
,
,
,过
边上一点
(异于端点)引边
的垂线
,垂足为
,再由
引边
的垂线
,垂足为
,又由
引边
的垂线
,垂足为
,同样的操作连续进行,得到点列
、
、
,设
(
);
(1)求
;
(2)结论“
”是否正确?请说明理由;
(3)若对于任意
,不等式
恒成立,求
的取值范围;
科目:高中数学 来源: 题型:
【题目】已知椭圆
的离心率为
,下顶点为
,
为椭圆的左、右焦点,过右焦点的直线与椭圆交于
两点,且
的周长为
.
(I)求椭圆
的方程;
(II)经过点
的直线与椭圆
交于不同的两点
(均异于点
),试探求直线
与
的斜率之和是否为定值,证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.
(Ⅰ)证明:PB∥平面AEC;
(Ⅱ)设PC与平面ABCD所成的角的正弦为
,AP=1,AD=
,求三棱锥E-ACD的体积.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知拋物线C:
经过点
,其焦点为F,M为抛物线上除了原点外的任一点,过M的直线l与x轴、y轴分别交于A,B两点.
Ⅰ
求抛物线C的方程以及焦点坐标;
Ⅱ
若
与
的面积相等,证明直线l与抛物线C相切.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥
中,
为
中点,侧棱
,底面
为直角梯形,其中
,
,
平面
,
、
分别是线段
、
上的动点,且
.
![]()
(1)求证:
平面
;
(2)当三棱锥
的体积取最大值时,求
到平面
的距离;
(3)在(2)的条件下求
与平面
所成角.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C:
的两个焦点分别为
,点M(1,0)与椭圆短轴的两个端点的连线相互垂直.
(1)求椭圆C的方程;
(2)过点M(1,0)的直线与椭圆C相交于A、B两点,设点N(3,2),记直线AN、BN的斜率分别为k1、k2,求证:k1+k2为定值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】给出下列四个说法,其中正确的是( )
A.命题“若
,则
”的否命题是“若
,则
”
B.“
”是“双曲线
的离心率大于
”的充要条件
C.命题“
,
”的否定是“
,
”
D.命题“在
中,若
,则
是锐角三角形”的逆否命题是假命题
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C的离心率为
,长轴的左、右端点分别为
,
.
![]()
(1)求椭圆C的方程;
(2)设直线
与椭圆C交于P,Q两点,直线
,
交于S,试问:当m变化时,点S是否恒在一条定直线上?若是,请写出这条直线的方程,并证明你的结论;若不是,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com