【题目】已知椭圆的离心率为,下顶点为,为椭圆的左、右焦点,过右焦点的直线与椭圆交于两点,且的周长为.
(I)求椭圆的方程;
(II)经过点的直线与椭圆交于不同的两点 (均异于点),试探求直线与的斜率之和是否为定值,证明你的结论.
科目:高中数学 来源: 题型:
【题目】“科技引领,布局未来”科技研发是企业发展的驱动力量。年,某企业连续年累计研发投入搭亿元,我们将研发投入与经营投入的比值记为研发投入占营收比,这年间的研发投入(单位:十亿元)用右图中的折现图表示,根据折线图和条形图,下列结论错误的使( )
A. 年至年研发投入占营收比增量相比年至年增量大
B. 年至年研发投入增量相比年至年增量小
C. 该企业连续年研发投入逐年增加
D. 该企业来连续年来研发投入占营收比逐年增加
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下列说法中,正确的个数是( )
(1)在频率分布直方图中,中位数左边和右边的直方图的面积相等.
(2)如果一组数中每个数减去同一个非零常数,则这一组数的平均数改变,方差不改变.
(3)一个样本的方差s2=[(x一3)2+(X—3)2+ +(X一3)2],则这组数据总和等于60.
(4)数据的方差为,则数据的方差为.
A.4B.3C.2D.1
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某网络营销部门为了统计某市网友某日在某淘宝店的网购情况,随机抽查了该市当天名网友的网购金额情况,得到如下统计表(如图).
网购金额(单位:千元) | 频数 | 频率 |
3 | 0.05 | |
9 | 0.15 | |
15 | 0.25 | |
18 | 0.30 | |
若网购金额超过千元的顾客定义为“网购达人”,网购金额不超过千元的顾客定义为“非网购达人”,已知“非网购达人”与“网购达人”人数比恰好为.
(Ⅰ)试确定的值,并补全频率分布直方图(如图);
(Ⅱ)该营销部门为了进一步了解这名网友的购物体验,从“非网购达人”与“网购达人”中用分层抽样的方法抽取人,若需从这人中随机选取人进行问卷调查.设为选取的人中“网购达人”的人数,求的分布列及其数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设直线与平面相交但不垂直,则下列说法中正确的是( )
A.在平面内没有直线与直线垂直;
B.在平面内有且只有一条直线与直线垂直;
C.在平面内有无数条直线与直线垂直;
D.在平面内存在两条相交直线与直线垂直.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】关于旋转体的体积,有如下的古尔丁(guldin)定理:“平面上一区域D绕区域外一直线(区域D的每个点在直线的同侧,含直线上)旋转一周所得的旋转体的体积,等于D的面积与D的几何中心(也称为重心)所经过的路程的乘积”.利用这一定理,可求得半圆盘,绕直线x旋转一周所形成的空间图形的体积为_____.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.
(1) 证明:PB∥平面AEC
(2) 设二面角D-AE-C为60°,AP=1,AD=,求三棱锥E-ACD的体积
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知中,边,,令,,,过边上一点(异于端点)引边的垂线,垂足为,再由引边的垂线,垂足为,又由引边的垂线,垂足为,同样的操作连续进行,得到点列、、,设();
(1)求;
(2)结论“”是否正确?请说明理由;
(3)若对于任意,不等式恒成立,求的取值范围;
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com