精英家教网 > 高中数学 > 题目详情

如图,在直三棱柱ABC-A1B1C1中,AB=AC,点D是BC的中点.
(1)求证:A1B∥平面ADC1
(2)如果点E是B1C1的中点,求证:平面A1BE⊥平面BCC1B1

证明:(1)连接A1C交AC1于点O,连接OD
在△A1BC中,∵点D是BC的中点,O是A1C的中点
∴A1B∥OD
∵OD?平面ADC1,A1B?平面ADC1
∴A1B∥平面ADC1
(2)直三棱柱ABC-A1B1C1中,C1C⊥平面ABC
∴C1C⊥AD
在△ABC中,AD⊥BC
∵BC∩C1C=C
∴AD⊥平面BCC1B1
连接DE,∵E是B1C1的中点
∴四边形B1BDE为平行四边形
∴B1B∥ED,B1B=ED
∵B1B∥A1A,B1B=A1A
∴ED∥A1A,ED=A1A
∴四边形A1ADE为平行四边形
∴A1E∥AD
∴A1E⊥平面BCC1B1
∵A1E?平面A1BE
∴平面A1BE⊥平面BCC1B1
分析:(1)证明A1B∥平面ADC1,利用线面平行的判定,只需证明A1B∥OD即可
(2)证明平面A1BE⊥平面BCC1B1,利用面面垂直的判定,证明A1E⊥平面BCC1B1即可.
点评:本题考查线面平行,考查面面垂直,解题的关键是正确运用线面平行,面面垂直的判定定理,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一P是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA.

(I)求证:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值; 

(Ⅲ)求点C到平面B1DP的距离.

查看答案和解析>>

科目:高中数学 来源:2011年四川省招生统一考试理科数学 题型:解答题

 

 (本小题共l2分)

    如图,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一[来源:]

P是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA.

(I)求证:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值;   

(Ⅲ)求点C到平面B1DP的距离.

 

查看答案和解析>>

科目:高中数学 来源:2011年高考试题数学理(四川卷)解析版 题型:解答题

 (本小题共l2分)

    如图,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一

P是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA.

(I)求证:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值;   

(Ⅲ)求点C到平面B1DP的距离.

 

 

 

查看答案和解析>>

科目:高中数学 来源:四川省高考真题 题型:解答题

如图,在直三棱柱AB-A1B1C1中,∠ BAC=90°,AB=AC=AA1=1,D是棱CC1上一点,P是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA。
(I)求证:CD=C1D;
(II)求二面角A-A1D-B的平面角的余弦值;
(Ⅲ)求点C到平面B1DP的距离

查看答案和解析>>

科目:高中数学 来源: 题型:

    如图,在直三棱柱AB-A1B1C1中.∠ BAC=90°,AB=AC=AA1 =1.D是棱CC1上的一点,P是AD的延长线与A1C1的延长线的交点,且PB1∥平面BDA.

(I)求证:CD=C1D:

(II)求二面角A-A1D-B的平面角的余弦值;

(Ⅲ)求点C到平面B1DP的距离.

查看答案和解析>>

同步练习册答案