精英家教网 > 高中数学 > 题目详情
8.已知集合A={x|ax2-3x+2=0},若A≠∅,则实数a的取值范围为(-∞,$\frac{9}{8}$].

分析 由A≠∅,分a=0和a≠0分类求解满足A≠∅的实数a的取值范围.

解答 解:当a=0时,方程ax2-3x+2=0化为-3x+2=0,解得:x=$\frac{2}{3}$,A={$\frac{2}{3}$}≠∅;
当a≠0时,要使A≠∅,则△=(-3)2-4×2a≥0,即a$≤\frac{9}{8}$.
∴使A≠∅的实数a的取值范围为(-∞,$\frac{9}{8}$].
故答案为:(-∞,$\frac{9}{8}$].

点评 本题考查空集的定义,性质和运算,考查了分类讨论的数学思想方法,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知等比数列{xn}的各项为不等于1的正数,数列{yn}满足yn•log${\;}_{{x}_{n}}$a=2(a>0且a≠1),已知y4=17,y7=11.
(1)数列{yn}的前多少项和最大?最大值是多少?
(2)是否存在正整数M,使当n>M时,xn>1恒成立?若存在,求M的取值范围;若不存在,则说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知f(x)是定义在(-∞,0)∪(0,+∞)上的不恒为零的函数,且对于任意的a,b∈R,满足f(ab)=af(b)+bf(a),$f(2)=2,{a_n}=\frac{{f({2^n})}}{2n}(n∈{N^*}),{b_n}=\frac{{f({2^n})}}{2^n}(n∈{N^*})$,则数列{anbn}的前n项和Sn=(n-1)•2n+1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=xekx-1(k≠0).
(1)判断函数f(x)的单调性;
(2)当k=1时,证明:对任意的x>0都有f(x)≥lnx+x.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.若O是△ABC的外心,且$\overrightarrow{OA}$+$\overrightarrow{OB}$+$\overrightarrow{CO}$=$\overrightarrow{0}$,则角C=$\frac{2π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若函数f(x)=k2x-2-x在(-∞,+∞)上是奇函数,则函数g(x)=log2(x+k)的图象是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.计算:2(lg$\sqrt{2}$)2+lg$\sqrt{2}$×lg5+$\sqrt{(lg\sqrt{2})^{2}-lg2+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知f(x)=xlnx,g(x)=-x2+ax-3.
(1)求函数f(x)在区间[t,t+2](t>0)上的最小值;
(2)对一切实数x∈(0,+∞),2f(x)≥g(x)恒成立,求实数a的取值范围;
(3)证明对一切x∈(0,+∞),lnx>$\frac{1}{e^x}-\frac{2}{ex}$恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.求函数y=$\frac{sinx}{2+cosx}$的最小值是-$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

同步练习册答案