精英家教网 > 高中数学 > 题目详情
(2013•虹口区二模)在△ABC中,AB=1,AC=2,(
AB
+
AC
)•
AB
=2
,则△ABC面积等于
3
2
3
2
分析:利用数量积运算性质可得cosA,再利用平方关系即可得出sinA,利用三角形的面积公式S△ABC=
1
2
AB•AC×sinA
即可得出.
解答:解:∵在△ABC中,AB=1,AC=2,(
AB
+
AC
)•
AB
=2

AB
2
+
AC
AB
=2

∴12+2×1×cosA=2,解得cosA=
1
2

∵0<A<π,∴sinA=
1-(
1
2
)2
=
3
2

∴S△ABC=
1
2
AB•AC×sinA
=
1
2
×1×2×
3
2
=
3
2

故答案为
3
2
点评:熟练掌握数量积运算性质、平方关系、三角形的面积公式S△ABC=
1
2
AB•AC×sinA
是解题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•虹口区二模)已知函数y=2sin(x+
π
2
)cos(x-
π
2
)
与直线y=
1
2
相交,若在y轴右侧的交点自左向右依次记为M1,M2,M3,…,则|
M1M13
|
等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•虹口区二模)在正方体ABCD-A1B1C1D1中与异面直线AB,CC1均垂直的棱有(  )条.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•虹口区二模)已知复数zn=an+bn•i,其中an∈R,bn∈R,n∈N*,i是虚数单位,且zn+1=2zn+
.
zn
+2i
,z1=1+i.
(1)求数列{an},{bn}的通项公式;
(2)求和:①z1+z2+…+zn;②a1b1+a2b2+…+anbn

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•虹口区二模)函数f(x)=(2k-1)x+1在R上单调递减,则k的取值范围是
-∞,
1
2
-∞,
1
2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•虹口区二模)已知复数z=
(1-i)31+i
,则|z|=
2
2

查看答案和解析>>

同步练习册答案