(06年江西卷理)(12分)
如图,在三棱锥A-BCD中,侧面ABD、ACD
是全等的直角三角形,AD是公共的斜边,
且AD=,BD=CD=1,另一个侧面是正三角形
(1)求证:AD^BC
(2)求二面角B-AC-D的大小
(3)在直线AC上是否存在一点E,使ED与面BCD
成30°角?若存在,确定E的位置;若不存在,说明理由。
解析:解法一:
(1)方法一:作AH^面BCD于H,连DH。
AB^BDÞHB^BD,又AD=,BD=1
\AB==BC=AC \BD^DC
又BD=CD,则BHCD是正方形,则DH^BC\AD^BC
方法二:取BC的中点O,连AO、DO
则有AO^BC,DO^BC,\BC^面AOD
\BC^AD
(2)作BM^AC于M,作MN^AC交AD于N,则ÐBMN就是二面角B-AC-D的平面角,因为AB=AC=BC=\M是AC的中点,且MN¤¤CD,则BM=,MN=CD=,BN=AD=,由余弦定理可求得cosÐBMN=
\ÐBMN=arccos
(3)设E是所求的点,作EF^CH于F,连FD。则EF¤¤AH,\EF^面BCD,ÐEDF就是ED与面BCD所成的角,则ÐEDF=30°。设EF=x,易得AH=HC=1,则CF=x,FD=,\tanÐEDF===解得x=,则CE=x=1
故线段AC上存在E点,且CE=1时,ED与面BCD成30°角。
解法二:此题也可用空间向量求解,解答略
科目:高中数学 来源: 题型:
(06年江西卷理)如图,在四面体ABCD中,截面AEF经过四面体的内切球(与四个面都相切的球)球心O,且与BC,DC分别截于E、F,如果截面将四面体分成体积相等的两部分,设四棱锥A-BEFD与三棱锥A-EFC的表面积分别是S1,S2,则必有( )
A.S1<S2 B.S1>S
查看答案和解析>>
科目:高中数学 来源: 题型:
(06年江西卷理)如图,在直三棱柱ABC-A1B1C1中,底面为直角三角形,ÐACB=90°,AC=6,BC=CC1=,P是BC1上一动点,则CP+PA1的最小值是___________
查看答案和解析>>
科目:高中数学 来源: 题型:
(06年江西卷理)(12分)
如图,已知△ABC是边长为1的正三角形,M、N分别是
边AB、AC上的点,线段MN经过△ABC的中心G,
设ÐMGA=a()
(1)试将△AGM、△AGN的面积(分别记为S1与S2)表示为a的函数
(2)求y=的最大值与最小值
查看答案和解析>>
科目:高中数学 来源: 题型:
(06年江西卷理)(12分)
如图,椭圆Q:(a>b>0)的右焦点F(c,0),过点F的一动直线m绕点F转动,并且交椭圆于A、B两点,P是线段AB的中点
(1)求点P的轨迹H的方程
(2)在Q的方程中,令a2=1+cosq+sinq,b2=sinq(0<q£ ),确定q的值,使原点距椭圆的右准线l最远,此时,设l与x轴交点为D,当直线m绕点F转动到什么位置时,三角形ABD的面积最大?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com