【题目】已知离散型随机变量X的分布列如下:
X | 0 | 1 | 2 |
P | x | 4x | 5x |
由此可以得到期望E(X)= , 方差D(X) .
【答案】1.4;0.44.
【解析】解:由离散型随机变量X的分布列,知:
x+4x+5x=1,解得x=0.1,
∴E(X)=0×0.1+1×0.4+2×0.5=1.4,
D(X)=(0﹣1.4)2×0.1+(1﹣1.4)2×0.4+(2﹣1.4)2×0.5=0.44.
所以答案是:1.4,0.44.
【考点精析】解答此题的关键在于理解离散型随机变量及其分布列的相关知识,掌握在射击、产品检验等例子中,对于随机变量X可能取的值,我们可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.离散型随机变量的分布列:一般的,设离散型随机变量X可能取的值为x1,x2,.....,xi,......,xn,X取每一个值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,则称表为离散型随机变量X 的概率分布,简称分布列.
科目:高中数学 来源: 题型:
【题目】设全集U={0,1,2,3,4},集合A={1,2,3},B={2,3,4},则A∩(UB)=( )
A.{0}
B.{1}
C.{0,1}
D.{0,1,2,3,4}
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】\m>0”是“函数f(x)=m+log2x(x≥1)不存在零点”的( )
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分又不必要条件
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设f(x)是R上的任意函数,则下列叙述正确的是( )
A.f(x)f(﹣x)是奇函数
B.f(x)|f(﹣x)|是奇函数
C.f(x)﹣f(﹣x)是偶函数
D.f(x)+f(﹣x)是偶函数
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】(lg2)20+C201(lg2)19lg5+…+C20r﹣1(lg2)21﹣r(lg5)r﹣1+…+(lg5)20=( )
A.1
B.(lg7)20
C.220
D.1020
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,将一矩形花坛ABCD扩建成一个更大的矩形花坛AMPN,要求B点在AM上,D点在AN上,且对角线MN过C点,已知AB=3米,AD=2米.
(Ⅰ)要使矩形AMPN的面积大于32平方米,则DN的长应在什么范围内?
(Ⅱ)当DN的长为多少时,矩形花坛AMPN的面积最小?并求出最小值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com