精英家教网 > 高中数学 > 题目详情
11.如图,由曲线y=x2和直线y=$\frac{1}{4}$,x=1,x=0所围成的图形(阴影部分)的面积是(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.1D.2

分析 利用定积分的几何意义,首先用定积分表示阴影部分的面积,然后计算.

解答 解:由曲线y=x2和直线y=$\frac{1}{4}$,x=1,x=0所围成的图形(阴影部分)的面积是${∫}_{0}^{\frac{1}{2}}(\frac{1}{4}-{x}^{2})dx+{∫}_{\frac{1}{2}}^{1}({x}^{2}-\frac{1}{4})dx$=($\frac{1}{4}x$-$\frac{1}{3}{x}^{3}$)|${\;}_{0}^{\frac{1}{2}}$+($\frac{1}{3}{x}^{3}-\frac{1}{4}x$)|${\;}_{\frac{1}{2}}^{1}$=$\frac{1}{4}$;
故选A.

点评 本题考查了定积分的运用;关键是利用定积分表示出阴影部分的面积,然后正确计算.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.若数列{an}的前n项和Sn=n2-2n,求通项公式an

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.在1到10这10个自然数中,选取4个,要求这4个数两两不相邻,则共有选法35.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.求${(\frac{sinx+2}{cosx})}^{2}$的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)=$\sqrt{x}$+1,g(x)=alnx,若在x=$\frac{1}{4}$处函数f(x)与g(x)的图象的切线平行,则实数a的值为$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.2012年10月18日全国第二届绿色运动会在池洲隆垦开幕.本次大会的主题是“绿色、低碳、环保”为大力宣传这一主题,主办方将这6个字做成灯笼悬挂在主会场(如图所示),大会结束后,要将这6个灯笼撤下来,每次撤其中一列最下面的一个,则不同的撤法种数为(  )
A.36B.54C.72D.90

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设复数z=(1-i)n(其中i为虚数单位,n∈N*).若z∈R,则n的最小值为(  )
A.2B.4C.6D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a,b>0)的一条渐近线与抛物线y2=x的一个交点的横坐标为x0,若x0>1,则双曲线C的离心率e的取值范围是(  )
A.(1,$\frac{\sqrt{6}}{2}$)B.($\sqrt{2}$,+∞)C.(1,$\sqrt{2}$)D.($\frac{\sqrt{6}}{2}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知全集U={x|x2+2≥3x},A={x||x-2|>1},B={x|$\frac{3x-5}{x-2}$≥2},求∁UA,∁UB,A∩B,A∩(∁UB),(∁UA)∩B.

查看答案和解析>>

同步练习册答案