精英家教网 > 高中数学 > 题目详情
如果f(x)=
x+1
,则f(7)=(  )
A、2
B、4
C、2
2
D、10
考点:函数的值
专题:计算题,函数的性质及应用
分析:代入函数解析式,计算即可.
解答: 解:∵f(x)=
x+1

∴f(7)=
7+1
=
8
=2
2

故选:C
点评:本题考查了函数的概念,属于计算题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)是定义在R上的奇函数,当x>0时,
xf′(x)-f(x)
x2
>0,且f(-2)=0,则不等式
f(x)
x
>0的解集是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=log3(9x)•log3(3x),且
1
9
≤x≤9.
(1)求f(3)的值;
(2)若令t=log3x,求实数t的取值范围;
(3)将y=f(x)表示成以t(t=log3x)为自变量的函数,并由此求函数y=f(x)的最大值与最小值及与之对应的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

直线mx+(2m-1)y+1=0与直线3x+my+3=0垂直,则m为(  )
A、-1B、1C、2D、-1或0

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}满足:a1=2,a1+a2+a3=12,且an-2an+1+an+2=0(n∈N*
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)令bn=
4
anan+1
+2n-1an
,求数列{bn}的前n项和Tn
(Ⅲ)已知数列{cn}满足
1
cn
=3
an
2
,其前n项和Cn;试比较Cn
1
2
的大小关系.

查看答案和解析>>

科目:高中数学 来源: 题型:

在长为10的线段AB上任取一点P,并以线段AP为一条边作正方形,这个正方形的面积属于区间[36,81]的概率为(  )
A、
9
20
B、
1
5
C、
3
10
D、
2
5

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x+
1
x

(1)判断函数f(x)的奇偶性,并画出函数f(x)的简图;
(2)求出函数f(x)的单调区间;
(3)求函数g(x)=x+
1
x+1
(x≥2)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知一圆C的圆心为(2,-1),且该圆被直线l:x-y-1=0 截得的弦长为2
2

(Ⅰ)求该圆的方程
(Ⅱ)求过点P(4,3)的该圆的切线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=
log2x,x≥0
x(x-2),x<0
,则f[f(-2)]=(  )
A、2B、3C、4D、5

查看答案和解析>>

同步练习册答案