解:如图,取BD的中点为O,
![]()
连结AO、CO.
∵AB=AD,BC=CD,∴AO⊥BD,CO⊥BD.
∴∠AOC为二面角A—BD—C的平面角.
∵AB=AD=a,BD=
a,∴AO=
a.
∵BC=CD=a,BD=
a,∴CO=
a.
在△AOC中,由余弦定理得
cosAOC=![]()
=
.
∴∠AOC=120°,
即二面角A—BD—C的平面角为120°.
点评:求二面角的大小,一般是先作出二面角的平面角,然后通过解三角形求其大小.本例是先作出∠AOC,然后证明∠AOC为二面角A—BD—C的平面角,通过解△AOC求得∠AOC.其解题过程为:作∠AOC→证∠AOC为所求二面角的平面角→计算∠AOC.这个过程简记为“作、证、算”.
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源: 题型:
查看答案和解析>>
科目:高中数学 来源:2010-2011学年河南省高三12月月考文科数学卷 题型:解答题
(本小题满分12分)
如图,已知空间四边形ABCD中,BC=AC, AD=BD,E是AB的中点,
![]()
求证:
AB⊥平面CDE;
平面CDE⊥平面ABC;
若G为△ADC的重心,试在线段AB上确定一点F,使得GF∥平面CDE.
查看答案和解析>>
科目:高中数学 来源:不详 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com