精英家教网 > 高中数学 > 题目详情

   已知抛物线C的顶点在原点, 焦点为F(0, 1).

(Ⅰ) 求抛物线C的方程;

(Ⅱ) 在抛物线C上是否存在点P, 使得过点P的直

线交C于另一点Q, 满足PF⊥QF, 且PQ与C

在点P处的切线垂直? 若存在, 求出点P的坐标;

若不存在, 请说明理由.

 

 

 

 

 

 

 

 

【答案】

 本题主要考查抛物线的几何性质,直线与抛物线的位置关系等基础知识,考查解析

几何的基本思想方法和综合解题能力。满分15分。

(Ⅰ) 解: 设抛物线C的方程是x2 = ay,

,

即a = 4.

故所求抛物线C的方程为x2 = 4y .            …………………(5分)

(Ⅱ) 解: 设P(x1, y1), Q(x2, y2),

则抛物线C在点P处的切线方程是

,

直线PQ的方程是

.

将上式代入抛物线C的方程, 得

,

故 x1+x2 =, x1x2 =-y1 ,

所以 x2=-x1 , y2=+y1+4 .

=(x1, y), =(x2 , y) ,

×=x1 x2+(y) (y)

=x1 x2+y1 y2-(y1+y2)+1

=-4(2+y1)+ y1(+y1+4)-(+2y1+4)+1

-2y1 --7

=(+2y1+1)-4(+y1+2)

=(y1+1)2-

=0,

故 y1=4, 此时, 点P的坐标是(±4,4) .

经检验, 符合题意.

所以, 满足条件的点P存在, 其坐标为P(±4,4). …………………(15分)

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知抛物线C的顶点在原点,焦点为F(0,1).
(Ⅰ)求抛物线C的方程;
(Ⅱ)在抛物线C上是否存在点P,使得过点P的直线交C于另一点Q,满足PF⊥QF,且PQ与C在点P处的切线垂直?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•温州一模)已知抛物线C的顶点在原点,焦点为F(0,1),且过点A(2,t),
(I)求t的值;
(II)若点P、Q是抛物线C上两动点,且直线AP与AQ的斜率互为相反数,试问直线PQ的斜率是否为定值,若是,求出这个值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C的顶点在原点,焦点为F(
1
2
,0)
.(1)求抛物线C的方程; (2)已知直线y=k(x+
1
2
)
与抛物线C交于A、B 两点,且|FA|=2|FB|,求k 的值; (3)设点P 是抛物线C上的动点,点R、N 在y 轴上,圆(x-1)2+y2=1 内切于△PRN,求△PRN 的面积最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C的顶点在坐标原点,焦点F(1,0).
(Ⅰ)求抛物线C的方程;
(Ⅱ)命题:“过抛物线C的焦点F作与x轴不垂直的任意直线l交抛物线于A、B两点,线段AB的垂直平分线交x轴于点M,则
|AB||FM|
为定值,且定值是2”.判断它是真命题还是假命题,并说明理;
(Ⅲ)试推广(Ⅱ)中的命题,写出关于抛物线的一般性命题(注,不必证明).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C的顶点在坐标原点,以坐标轴为对称轴,且焦点F(2,0).
(1)求抛物线C的标准方程;
(2)直线l过焦点F与抛物线C相交与M,N两点,且|MN|=16,求直线l的倾斜角.

查看答案和解析>>

同步练习册答案